Goto

Collaborating Authors

 Li, Wenting


Cascading Blackout Severity Prediction with Statistically-Augmented Graph Neural Networks

arXiv.org Artificial Intelligence

Higher variability in grid conditions, resulting from growing renewable penetration and increased incidence of extreme weather events, has increased the difficulty of screening for scenarios that may lead to catastrophic cascading failures. Traditional power-flow-based tools for assessing cascading blackout risk are too slow to properly explore the space of possible failures and load/generation patterns. We add to the growing literature of faster graph-neural-network (GNN)-based techniques, developing two novel techniques for the estimation of blackout magnitude from initial grid conditions. First we propose several methods for employing an initial classification step to filter out safe "non blackout" scenarios prior to magnitude estimation. Second, using insights from the statistical properties of cascading blackouts, we propose a method for facilitating non-local message passing in our GNN models. We validate these two approaches on a large simulated dataset, and show the potential of both to increase blackout size estimation performance.


Word-Graph2vec: An efficient word embedding approach on word co-occurrence graph using random walk technique

arXiv.org Artificial Intelligence

Word embedding has become ubiquitous and is widely used in various natural language processing (NLP) tasks, such as web retrieval, web semantic analysis, and machine translation, and so on. Unfortunately, training the word embedding in a relatively large corpus is prohibitively expensive. We propose a graph-based word embedding algorithm, called Word-Graph2vec, which converts the large corpus into a word co-occurrence graph, then takes the word sequence samples from this graph by randomly traveling and trains the word embedding on this sampling corpus in the end. We posit that because of the limited vocabulary, huge idioms, and fixed expressions in English, the size and density of the word co-occurrence graph change slightly with the increase in the training corpus. So that Word-Graph2vec has stable runtime on the large-scale data set, and its performance advantage becomes more and more obvious with the growth of the training corpus. Extensive experiments conducted on real-world datasets show that the proposed algorithm outperforms traditional Word2vec four to five times in terms of efficiency and two to three times than FastText, while the error generated by the random walk technique is small. Keywords: Word co-occurrence Graph Random walk Word embedding.


PPGN: Physics-Preserved Graph Networks for Real-Time Fault Location in Distribution Systems with Limited Observation and Labels

arXiv.org Artificial Intelligence

Electrical faults may trigger blackouts or wildfires without timely monitoring and control strategy. Traditional solutions for locating faults in distribution systems are not real-time when network observability is low, while novel black-box machine learning methods are vulnerable to stochastic environments. We propose a novel Physics-Preserved Graph Network (PPGN) architecture to accurately locate faults at the node level with limited observability and labeled training data. PPGN has a unique two-stage graph neural network architecture. The first stage learns the graph embedding to represent the entire network using a few measured nodes. The second stage finds relations between the labeled and unlabeled data samples to further improve the location accuracy. We explain the benefits of the two-stage graph configuration through a random walk equivalence. We numerically validate the proposed method in the IEEE 123-node and 37-node test feeders, demonstrating the superior performance over three baseline classifiers when labeled training data is limited, and loads and topology are allowed to vary.


Machine Learning for Variance Reduction in Online Experiments

arXiv.org Machine Learning

We consider the problem of variance reduction in randomized controlled trials, through the use of covariates correlated with the outcome but independent of the treatment. We propose a machine learning regression-adjusted treatment effect estimator, which we call MLRATE. MLRATE uses machine learning predictors of the outcome to reduce estimator variance. It employs cross-fitting to avoid overfitting biases, and we prove consistency and asymptotic normality under general conditions. MLRATE is robust to poor predictions from the machine learning step: if the predictions are uncorrelated with the outcomes, the estimator performs asymptotically no worse than the standard difference-in-means estimator, while if predictions are highly correlated with outcomes, the efficiency gains are large. In A/A tests, for a set of 48 outcome metrics commonly monitored in Facebook experiments the estimator has over 70% lower variance than the simple difference-in-means estimator, and about 19% lower variance than the common univariate procedure which adjusts only for pre-experiment values of the outcome.


Real-time Fault Localization in Power Grids With Convolutional Neural Networks

arXiv.org Machine Learning

Abstract--Diverse fault types, fast re-closures and complicated transient states after a fault event make real-time fault location in power grids challenging. Existing localization techniques in this area rely on simplistic assumptions, such as static loads, or require much higher sampling rates or total measurement availability. This paper proposes a data-driven localization method based on a Convolutional Neural Network (CNN) classifier using bus voltages. Unlike prior data-driven methods, the proposed classifier is based on features with physical interpretations that are described in details. The accuracy of our CNN based localization tool is demonstrably superior to other machine learning classifiers in the literature. T o further improve the location performance, a novel phasor measurement units (PMU) placement strategy is proposed and validated against other methods. A significant aspect of our methodology is that under very low observability ( 7% of buses), the algorithm is still able to localize the faulted line to a small neighborhood with high probability. The performance of our scheme is validated through simulations of faults of various types in the IEEE 68-bus power system under varying load conditions, system observability and measurement quality. Efficient fault localization is an integral part of the system restoration, and it is necessary for improving power system stability and reliability.