Li, Weijia
PM4Bench: A Parallel Multilingual Multi-Modal Multi-task Benchmark for Large Vision Language Model
Gao, Junyuan, Song, Jiahe, Wu, Jiang, Zhu, Runchuan, Shen, Guanlin, Wang, Shasha, Wei, Xingjian, Yang, Haote, Zhang, Songyang, Li, Weijia, Wang, Bin, Lin, Dahua, Wu, Lijun, He, Conghui
Existing multilingual benchmarks for Large Vision Language Models (LVLMs) suffer from limitations including language-specific content biases, disjointed multimodal input formats, and a lack of safety evaluation. To address these gaps, we propose PM4Bench, the first Parallel Multilingual Multi-Modal Multi-task Benchmark for LVLMs. PM4Bench features a parallel corpus design across 10 languages, enabling fair and accurate cross-lingual comparisons. It includes the vision setting where text and queries are embedded in images, requiring LVLMs to simultaneously "see", "read", and "think", aligning with real-world applications. Additionally, PM\textsuperscript{4}Bench incorporates safety evaluations, addressing critical oversight in existing multilingual benchmarks. Using PM4Bench, we evaluate 11 mainstream LVLMs, revealing significant cross-linguistic performance disparities, particularly in vision settings, and identifying OCR capability as a key determinant of these imbalances. We will release PM4Bench at https://github.com/opendatalab/PM4Bench .
Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem?
Wen, Zichen, Gao, Yifeng, Li, Weijia, He, Conghui, Zhang, Linfeng
Multimodal large language models (MLLMs) have shown remarkable performance for cross-modal understanding and generation, yet still suffer from severe inference costs. Recently, abundant works have been proposed to solve this problem with token pruning, which identifies the redundant tokens in MLLMs and then prunes them to reduce the computation and KV storage costs, leading to significant acceleration without training. While these methods claim efficiency gains, critical questions about their fundamental design and evaluation remain unanswered: Why do many existing approaches underperform even compared to naive random token selection? Are attention-based scoring sufficient for reliably identifying redundant tokens? Is language information really helpful during token pruning? What makes a good trade-off between token importance and duplication? Are current evaluation protocols comprehensive and unbiased? The ignorance of previous research on these problems hinders the long-term development of token pruning. In this paper, we answer these questions one by one, providing insights into the design of future token pruning methods.
Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More
Wen, Zichen, Gao, Yifeng, Wang, Shaobo, Zhang, Junyuan, Zhang, Qintong, Li, Weijia, He, Conghui, Zhang, Linfeng
Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99$\times$ and 2.99$\times$ speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.
Beyond Static Assumptions: the Predictive Justified Perspective Model for Epistemic Planning
Li, Weijia, Hu, Guang, Xu, Yangmengfei
Epistemic Planning (EP) is an important research area dedicated to reasoning about the knowledge and beliefs of agents in multi-agent cooperative or adversarial settings. The Justified Perspective (JP) model is the state-of-the-art approach to solving EP problems with efficiency and expressiveness. However, all existing EP methods inherit the static environment assumption from classical planning. This limitation hinders the application of EP in fields such as robotics with multi-agent settings, where the environment contains changing variables. In this paper, we propose an extension of the JP model, namely, the Predictive Justified Perspective (PJP) model, to remove this assumption. Instead of assuming that beliefs remain unchanged since the last observation, the PJP model uses all past observations to form predictions about the changing variables. The definition of the prediction function with examples is provided, and it is demonstrated that it can work with arbitrary nesting. We then implemented the PJP model in several well-known domains and compared it with the JP model in the experiments. The results indicated that the PJP model performs exceptionally well across various domains, demonstrating its potential in improving EP applications in robotics.
VIGC: Visual Instruction Generation and Correction
Wang, Bin, Wu, Fan, Han, Xiao, Peng, Jiahui, Zhong, Huaping, Zhang, Pan, Dong, Xiaoyi, Li, Weijia, Li, Wei, Wang, Jiaqi, He, Conghui
The integration of visual encoders and large language models (LLMs) has driven recent progress in multimodal large language models (MLLMs). However, the scarcity of high-quality instruction-tuning data for vision-language tasks remains a challenge. The current leading paradigm, such as LLaVA, relies on language-only GPT-4 to generate data, which requires pre-annotated image captions and detection bounding boxes, suffering from understanding image details. A practical solution to this problem would be to utilize the available multimodal large language models (MLLMs) to generate instruction data for vision-language tasks. However, it's worth noting that the currently accessible MLLMs are not as powerful as their LLM counterparts, as they tend to produce inadequate responses and generate false information. As a solution for addressing the current issue, this paper proposes the Visual Instruction Generation and Correction (VIGC) framework that enables multimodal large language models to generate instruction-tuning data and progressively enhance its quality on-the-fly. Specifically, Visual Instruction Generation (VIG) guides the vision-language model to generate diverse instruction-tuning data. To ensure generation quality, Visual Instruction Correction (VIC) adopts an iterative update mechanism to correct any inaccuracies in data produced by VIG, effectively reducing the risk of hallucination. Leveraging the diverse, high-quality data generated by VIGC, we finetune mainstream models and validate data quality based on various evaluations. Experimental results demonstrate that VIGC not only compensates for the shortcomings of language-only data generation methods, but also effectively enhances the benchmark performance. The models, datasets, and code are available at https://opendatalab.github.io/VIGC.
Parrot Captions Teach CLIP to Spot Text
Lin, Yiqi, He, Conghui, Wang, Alex Jinpeng, Wang, Bin, Li, Weijia, Shou, Mike Zheng
Despite CLIP being the foundation model in numerous vision-language applications, the CLIP suffers from a severe text spotting bias. Such bias causes CLIP models to `Parrot' the visual text embedded within images while disregarding the authentic visual semantics. We uncover that in the most popular image-text dataset LAION-2B, the captions also densely parrot (spell) the text embedded in images. Our analysis shows that around 50% of images are embedded with visual text content, and around 30% of captions words are in these embedded visual content. Based on such observation, we thoroughly inspect the different released versions of CLIP models and verify that the visual text is the dominant factor in measuring the LAION-style image-text similarity for these models. To examine whether these parrot captions shape the text spotting bias, we train a series of CLIP models with LAION subsets curated by different parrot-caption-oriented criteria. We show that training with parrot captions easily shapes such bias but harms the expected visual-language representation learning in CLIP models. This suggests that it is urgent to revisit either the design of CLIP-like models or the existing image-text dataset curation pipeline built on CLIP score filtering.