Li, Weidong
Integrated Private Data Trading Systems for Data Marketplaces
Li, Weidong, Zhang, Mengxiao, Zhang, Libo, Liu, Jiamou
In the digital age, data is a valuable commodity, and data marketplaces offer lucrative opportunities for data owners to monetize their private data. However, data privacy is a significant concern, and differential privacy has become a popular solution to address this issue. Private data trading systems (PDQS) facilitate the trade of private data by determining which data owners to purchase data from, the amount of privacy purchased, and providing specific aggregation statistics while protecting the privacy of data owners. However, existing PDQS with separated procurement and query processes are prone to over-perturbation of private data and lack trustworthiness. To address this issue, this paper proposes a framework for PDQS with an integrated procurement and query process to avoid excessive perturbation of private data. We also present two instances of this framework, one based on a greedy approach and another based on a neural network. Our experimental results show that both of our mechanisms outperformed the separately conducted procurement and query mechanism under the same budget regarding accuracy.
Towards Understanding and Harnessing the Effect of Image Transformation in Adversarial Detection
Liu, Hui, Zhao, Bo, Peng, Yuefeng, Li, Weidong, Liu, Peng
Deep neural networks (DNNs) are threatened by adversarial examples. Adversarial detection, which distinguishes adversarial images from benign images, is fundamental for robust DNN-based services. Image transformation is one of the most effective approaches to detect adversarial examples. During the last few years, a variety of image transformations have been studied and discussed to design reliable adversarial detectors. In this paper, we systematically synthesize the recent progress on adversarial detection via image transformations with a novel classification method. Then, we conduct extensive experiments to test the detection performance of image transformations against state-of-the-art adversarial attacks. Furthermore, we reveal that each individual transformation is not capable of detecting adversarial examples in a robust way, and propose a DNN-based approach referred to as AdvJudge, which combines scores of 9 image transformations. Without knowing which individual scores are misleading or not misleading, AdvJudge can make the right judgment, and achieve a significant improvement in detection accuracy. We claim that AdvJudge is a more effective adversarial detector than those based on an individual image transformation.