Li, Tianbin
SlideChat: A Large Vision-Language Assistant for Whole-Slide Pathology Image Understanding
Chen, Ying, Wang, Guoan, Ji, Yuanfeng, Li, Yanjun, Ye, Jin, Li, Tianbin, Zhang, Bin, Pei, Nana, Yu, Rongshan, Qiao, Yu, He, Junjun
Despite the progress made by multimodal large language models (MLLMs) in computational pathology, they remain limited by a predominant focus on patch-level analysis, missing essential contextual information at the whole-slide level. The lack of large-scale instruction datasets and the gigapixel scale of whole slide images (WSIs) pose significant developmental challenges. In this paper, we present SlideChat, the first vision-language assistant capable of understanding gigapixel whole-slide images, exhibiting excellent multimodal conversational capability and response complex instruction across diverse pathology scenarios. To support its development, we created SlideInstruction, the largest instruction-following dataset for WSIs consisting of 4.2K WSI captions and 176K VQA pairs with multiple categories. Furthermore, we propose SlideBench, a multimodal benchmark that incorporates captioning and VQA tasks to assess SlideChat's capabilities in varied clinical settings such as microscopy, diagnosis. Compared to both general and specialized MLLMs, SlideChat exhibits exceptional capabilities achieving state-of-the-art performance on 18 of 22 tasks. For example, it achieved an overall accuracy of 81.17% on SlideBench-VQA (TCGA), and 54.15% on SlideBench-VQA (BCNB). We will fully release SlideChat, SlideInstruction and SlideBench as open-source resources to facilitate research and development in computational pathology.
A Fine-tuning Dataset and Benchmark for Large Language Models for Protein Understanding
Shen, Yiqing, Chen, Zan, Mamalakis, Michail, He, Luhan, Xia, Haiyang, Li, Tianbin, Su, Yanzhou, He, Junjun, Wang, Yu Guang
The parallels between protein sequences and natural language in their sequential structures have inspired the application of large language models (LLMs) to protein understanding. Despite the success of LLMs in NLP, their effectiveness in comprehending protein sequences remains an open question, largely due to the absence of datasets linking protein sequences to descriptive text. Researchers have then attempted to adapt LLMs for protein understanding by integrating a protein sequence encoder with a pre-trained LLM. However, this adaptation raises a fundamental question: "Can LLMs, originally designed for NLP, effectively comprehend protein sequences as a form of language?" Current datasets fall short in addressing this question due to the lack of a direct correlation between protein sequences and corresponding text descriptions, limiting the ability to train and evaluate LLMs for protein understanding effectively. To bridge this gap, we introduce ProteinLMDataset, a dataset specifically designed for further self-supervised pretraining and supervised fine-tuning (SFT) of LLMs to enhance their capability for protein sequence comprehension. Specifically, ProteinLMDataset includes 17.46 billion tokens for pretraining and 893,000 instructions for SFT. Additionally, we present ProteinLMBench, the first benchmark dataset consisting of 944 manually verified multiple-choice questions for assessing the protein understanding capabilities of LLMs. ProteinLMBench incorporates protein-related details and sequences in multiple languages, establishing a new standard for evaluating LLMs' abilities in protein comprehension. The large language model InternLM2-7B, pretrained and fine-tuned on the ProteinLMDataset, outperforms GPT-4 on ProteinLMBench, achieving the highest accuracy score.
Enhancing Medical Task Performance in GPT-4V: A Comprehensive Study on Prompt Engineering Strategies
Chen, Pengcheng, Huang, Ziyan, Deng, Zhongying, Li, Tianbin, Su, Yanzhou, Wang, Haoyu, Ye, Jin, Qiao, Yu, He, Junjun
OpenAI's latest large vision-language model (LVLM), GPT-4V(ision), has piqued considerable interest for its potential in medical applications. Despite its promise, recent studies and internal reviews highlight its underperformance in specialized medical tasks. This paper explores the boundary of GPT-4V's capabilities in medicine, particularly in processing complex imaging data from endoscopies, CT scans, and MRIs etc. Leveraging open-source datasets, we assessed its foundational competencies, identifying substantial areas for enhancement. Our research emphasizes prompt engineering, an often-underutilized strategy for improving AI responsiveness. Through iterative testing, we refined the model's prompts, significantly improving its interpretative accuracy and relevance in medical imaging. From our comprehensive evaluations, we distilled 10 effective prompt engineering techniques, each fortifying GPT-4V's medical acumen. These methodical enhancements facilitate more reliable, precise, and clinically valuable insights from GPT-4V, advancing its operability in critical healthcare environments. Our findings are pivotal for those employing AI in medicine, providing clear, actionable guidance on harnessing GPT-4V's full diagnostic potential.