Li, Tian
MTLM: an Innovative Language Model Training Paradigm for ASR
Meng, Qingliang, Ren, Pengju, Li, Tian, Dai, Changsong
Pre-training Transformer-based language models (LMs) on a large amount of text has proven crucial for improving automatic speech recognition (ASR) performance. Generally, traditional LMs are unidirectional and unable to access the context on the right. This paper proposes a method for training LMs that enable traditional unidirectional LMs to fully utilize left and right contexts. Compared with the unidirectional LMs, our LM facilitates ASR to transcribe hypotheses more consistently and in a more semantically unambiguous way, as it incorporates richer contextual representations. Finally, our experimental results on the LibriSpeech corpus demonstrate that our model outperforms traditional unidirectional LMs, whether n-best rescoring or shallow fusion is used as the decoding algorithm.
Efficient Distributed Optimization under Heavy-Tailed Noise
Lee, Su Hyeong, Zaheer, Manzil, Li, Tian
Distributed optimization has become the default training paradigm in modern machine learning due to the growing scale of models and datasets. To mitigate communication overhead, local updates are often applied before global aggregation, resulting in a nested optimization approach with inner and outer steps. However, heavy-tailed stochastic gradient noise remains a significant challenge, particularly in attention-based models, hindering effective training. In this work, we propose TailOPT, an efficient framework designed to address heavy-tailed noise by leveraging adaptive optimization or clipping techniques. We establish convergence guarantees for the TailOPT framework under heavy-tailed noise with potentially unbounded gradient variance and local updates. Among its variants, we highlight a memory and communication efficient instantiation which we call $Bi^2Clip$, which performs coordinate-wise clipping at both the inner and outer optimizers, achieving adaptive-like performance (e.g., Adam) without the cost of maintaining or transmitting additional gradient statistics. Empirically, TailOPT, including $Bi^2Clip$, demonstrates superior performance on several language tasks and models, outperforming state-of-the-art methods.
AI-Powered Algorithm-Centric Quantum Processor Topology Design
Li, Tian, Xu, Xiao-Yue, Ding, Chen, Tian, Tian-Ci, Liao, Wei-You, Zhang, Shuo, Huang, He-Liang
Quantum computing promises to revolutionize various fields, yet the execution of quantum programs necessitates an effective compilation process. This involves strategically mapping quantum circuits onto the physical qubits of a quantum processor. The qubits' arrangement, or topology, is pivotal to the circuit's performance, a factor that often defies traditional heuristic or manual optimization methods due to its complexity. In this study, we introduce a novel approach leveraging reinforcement learning to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits, guiding algorithm-driven quantum processor topology design for reducing the depth of mapped circuit, which is particularly critical for the output accuracy on noisy quantum processors. Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology. Experiments demonstrate that we have achieved notable enhancements in circuit performance, with a minimum of 20\% reduction in circuit depth in 60\% of the cases examined, and a maximum enhancement of up to 46\%. Furthermore, the pronounced benefits of our approach in reducing circuit depth become increasingly evident as the scale of the quantum circuits increases, exhibiting the scalability of our method in terms of problem size. This work advances the co-design of quantum processor architecture and algorithm mapping, offering a promising avenue for future research and development in the field.
Reweighting Local Mimina with Tilted SAM
Li, Tian, Zhou, Tianyi, Bilmes, Jeffrey A.
Sharpness-Aware Minimization (SAM) has been demonstrated to improve the generalization performance of overparameterized models by seeking flat minima on the loss landscape through optimizing model parameters that incur the largest loss within a neighborhood. Nevertheless, such min-max formulations are computationally challenging especially when the problem is highly non-convex. Additionally, focusing only on the worst-case local solution while ignoring potentially many other local solutions may be suboptimal when searching for flat minima. In this work, we propose Tilted SAM (TSAM), a generalization of SAM inspired by exponential tilting that effectively assigns higher priority to local solutions that are flatter and that incur larger losses. TSAM is parameterized by a tilt hyperparameter t and reduces to SAM as t approaches infinity. We prove that (1) the TSAM objective is smoother than SAM and thus easier to optimize; and (2) TSAM explicitly favors flatter minima as t increases. This is desirable as flatter minima could have better generalization properties for certain tasks. We develop algorithms motivated by the discretization of Hamiltonian dynamics to solve TSAM. Empirically, TSAM arrives at flatter local minima and results in superior test performance than the baselines of SAM and ERM across a range of image and text tasks.
Generalization Error of the Tilted Empirical Risk
Aminian, Gholamali, Asadi, Amir R., Li, Tian, Beirami, Ahmad, Reinert, Gesine, Cohen, Samuel N.
The generalization error (risk) of a supervised statistical learning algorithm quantifies its prediction ability on previously unseen data. Inspired by exponential tilting, Li et al. (2021) proposed the tilted empirical risk as a non-linear risk metric for machine learning applications such as classification and regression problems. In this work, we examine the generalization error of the tilted empirical risk. In particular, we provide uniform and information-theoretic bounds on the tilted generalization error, defined as the difference between the population risk and the tilted empirical risk, with a convergence rate of $O(1/\sqrt{n})$ where $n$ is the number of training samples. Furthermore, we study the solution to the KL-regularized expected tilted empirical risk minimization problem and derive an upper bound on the expected tilted generalization error with a convergence rate of $O(1/n)$.
Efficient Adaptive Federated Optimization
Lee, Su Hyeong, Sharma, Sidharth, Zaheer, Manzil, Li, Tian
Adaptive optimization plays a pivotal role in federated learning, where simultaneous server and client-side adaptivity have been shown to be essential for maximizing its performance. However, the scalability of jointly adaptive systems is often constrained by limited resources in communication and memory. In this paper, we introduce a class of efficient adaptive algorithms, named $FedAda^2$, designed specifically for large-scale, cross-device federated environments. $FedAda^2$ optimizes communication efficiency by avoiding the transfer of preconditioners between the server and clients. At the same time, it leverages memory-efficient adaptive optimizers on the client-side to reduce on-device memory consumption. Theoretically, we demonstrate that $FedAda^2$ achieves the same convergence rates for general, non-convex objectives as its more resource-intensive counterparts that directly integrate joint adaptivity. Empirically, we showcase the benefits of joint adaptivity and the effectiveness of $FedAda^2$ on both image and text datasets.
Panoptic Perception: A Novel Task and Fine-grained Dataset for Universal Remote Sensing Image Interpretation
Zhao, Danpei, Yuan, Bo, Chen, Ziqiang, Li, Tian, Liu, Zhuoran, Li, Wentao, Gao, Yue
Current remote-sensing interpretation models often focus on a single task such as detection, segmentation, or caption. However, the task-specific designed models are unattainable to achieve the comprehensive multi-level interpretation of images. The field also lacks support for multi-task joint interpretation datasets. In this paper, we propose Panoptic Perception, a novel task and a new fine-grained dataset (FineGrip) to achieve a more thorough and universal interpretation for RSIs. The new task, 1) integrates pixel-level, instance-level, and image-level information for universal image perception, 2) captures image information from coarse to fine granularity, achieving deeper scene understanding and description, and 3) enables various independent tasks to complement and enhance each other through multi-task learning. By emphasizing multi-task interactions and the consistency of perception results, this task enables the simultaneous processing of fine-grained foreground instance segmentation, background semantic segmentation, and global fine-grained image captioning. Concretely, the FineGrip dataset includes 2,649 remote sensing images, 12,054 fine-grained instance segmentation masks belonging to 20 foreground things categories, 7,599 background semantic masks for 5 stuff classes and 13,245 captioning sentences. Furthermore, we propose a joint optimization-based panoptic perception model. Experimental results on FineGrip demonstrate the feasibility of the panoptic perception task and the beneficial effect of multi-task joint optimization on individual tasks. The dataset will be publicly available.
Many-Objective Multi-Solution Transport
Li, Ziyue, Li, Tian, Smith, Virginia, Bilmes, Jeff, Zhou, Tianyi
Optimizing the performance of many objectives (instantiated by tasks or clients) jointly with a few Pareto stationary solutions (models) is critical in machine learning. However, previous multi-objective optimization methods often focus on a few number of objectives and cannot scale to many objectives that outnumber the solutions, leading to either subpar performance or ignored objectives. We introduce Many-objective multi-solution Transport (MosT), a framework that finds multiple diverse solutions in the Pareto front of many objectives. Our insight is to seek multiple solutions, each performing as a domain expert and focusing on a specific subset of objectives while collectively covering all of them. MosT formulates the problem as a bi-level optimization of weighted objectives for each solution, where the weights are defined by an optimal transport between the objectives and solutions. Our algorithm ensures convergence to Pareto stationary solutions for complementary subsets of objectives. On a range of applications in federated learning, multi-task learning, and mixture-of-prompt learning for LLMs, MosT distinctly outperforms strong baselines, delivering high-quality, diverse solutions that profile the entire Pareto frontier, thus ensuring balanced trade-offs across many objectives.
DEED: Dynamic Early Exit on Decoder for Accelerating Encoder-Decoder Transformer Models
Tang, Peng, Zhu, Pengkai, Li, Tian, Appalaraju, Srikar, Mahadevan, Vijay, Manmatha, R.
Encoder-decoder transformer models have achieved great success on various vision-language (VL) tasks, but they suffer from high inference latency. Typically, the decoder takes up most of the latency because of the auto-regressive decoding. To accelerate the inference, we propose an approach of performing Dynamic Early Exit on Decoder (DEED). We build a multi-exit encoder-decoder transformer model which is trained with deep supervision so that each of its decoder layers is capable of generating plausible predictions. In addition, we leverage simple yet practical techniques, including shared generation head and adaptation modules, to keep accuracy when exiting at shallow decoder layers. Based on the multi-exit model, we perform step-level dynamic early exit during inference, where the model may decide to use fewer decoder layers based on its confidence of the current layer at each individual decoding step. Considering different number of decoder layers may be used at different decoding steps, we compute deeper-layer decoder features of previous decoding steps just-in-time, which ensures the features from different decoding steps are semantically aligned. We evaluate our approach with two state-of-the-art encoder-decoder transformer models on various VL tasks. We show our approach can reduce overall inference latency by 30%-60% with comparable or even higher accuracy compared to baselines.
Differentially Private Adaptive Optimization with Delayed Preconditioners
Li, Tian, Zaheer, Manzil, Liu, Ken Ziyu, Reddi, Sashank J., McMahan, H. Brendan, Smith, Virginia
Privacy noise may negate the benefits of using adaptive optimizers in differentially private model training. Prior works typically address this issue by using auxiliary information (e.g., public data) to boost the effectiveness of adaptive optimization. In this work, we explore techniques to estimate and efficiently adapt to gradient geometry in private adaptive optimization without auxiliary data. Motivated by the observation that adaptive methods can tolerate stale preconditioners, we propose differentially private adaptive training with delayed preconditioners (DP^2), a simple method that constructs delayed but less noisy preconditioners to better realize the benefits of adaptivity. Theoretically, we provide convergence guarantees for our method for both convex and non-convex problems, and analyze trade-offs between delay and privacy noise reduction. Empirically, we explore DP^2 across several real-world datasets, demonstrating that it can improve convergence speed by as much as 4x relative to non-adaptive baselines and match the performance of state-of-the-art optimization methods that require auxiliary data.