Goto

Collaborating Authors

 Li, Steve


Data Efficiency for Large Recommendation Models

arXiv.org Artificial Intelligence

Large recommendation models (LRMs) are fundamental to the multi-billion dollar online advertising industry, processing massive datasets of hundreds of billions of examples before transitioning to continuous online training to adapt to rapidly changing user behavior [1]. The massive scale of data directly impacts both computational costs and the speed at which new methods can be evaluated (R&D velocity). This paper presents actionable principles and high-level frameworks to guide practitioners in optimizing training data requirements. These strategies have been successfully deployed in Google's largest Ads CTR prediction models [1, 2] and are broadly applicable beyond LRMs. We outline the concept of data convergence, describe methods to accelerate this convergence, and finally, detail how to optimally balance training data volume with model size.


Goal Driven Discovery of Distributional Differences via Language Descriptions

arXiv.org Artificial Intelligence

Mining large corpora can generate useful discoveries but is time-consuming for humans. We formulate a new task, D5, that automatically discovers differences between two large corpora in a goal-driven way. The task input is a problem comprising a research goal "$\textit{comparing the side effects of drug A and drug B}$" and a corpus pair (two large collections of patients' self-reported reactions after taking each drug). The output is a language description (discovery) of how these corpora differ (patients taking drug A "$\textit{mention feelings of paranoia}$" more often). We build a D5 system, and to quantitatively measure its performance, we 1) contribute a meta-dataset, OpenD5, aggregating 675 open-ended problems ranging across business, social sciences, humanities, machine learning, and health, and 2) propose a set of unified evaluation metrics: validity, relevance, novelty, and significance. With the dataset and the unified metrics, we confirm that language models can use the goals to propose more relevant, novel, and significant candidate discoveries. Finally, our system produces discoveries previously unknown to the authors on a wide range of applications in OpenD5, including temporal and demographic differences in discussion topics, political stances and stereotypes in speech, insights in commercial reviews, and error patterns in NLP models.


The Naughtyformer: A Transformer Understands Offensive Humor

arXiv.org Artificial Intelligence

Jokes are intentionally written to be funny, but not all jokes are created the same. Some jokes may be fit for a classroom of kindergarteners, but others are best reserved for a more mature audience. While recent work has shown impressive results on humor detection in text, here we instead investigate the more nuanced task of detecting humor subtypes, especially of the less innocent variety. To that end, we introduce a novel jokes dataset filtered from Reddit and solve the subtype classification task using a finetuned Transformer dubbed the Naughtyformer. Moreover, we show that our model is significantly better at detecting offensiveness in jokes compared to state-of-the-art methods.