Li, Shuxing
Efficient Multi-Goal Reinforcement Learning via Value Consistency Prioritization
Xu, Jiawei (a:1:{s:5:"en_US";s:2:"no";}) | Li, Shuxing | Yang, Rui | Yuan, Chun | Han, Lei
Goal-conditioned reinforcement learning (RL) with sparse rewards remains a challenging problem in deep RL. Hindsight Experience Replay (HER) has been demonstrated to be an effective solution, where HER replaces desired goals in failed experiences with practically achieved states. Existing approaches mainly focus on either exploration or exploitation to improve the performance of HER. From a joint perspective, exploiting specific past experiences can also implicitly drive exploration. Therefore, we concentrate on prioritizing both original and relabeled samples for efficient goal-conditioned RL. To achieve this, we propose a novel value consistency prioritization (VCP) method, where the priority of samples is determined by the consistency of ensemble Q-values. This distinguishes the VCP method with most existing prioritization approaches which prioritizes samples based on the uncertainty of ensemble Q-values. Through extensive experiments, we demonstrate that VCP achieves significantly higher sample efficiency than existing algorithms on a range of challenging goal-conditioned manipulation tasks. We also visualize how VCP prioritizes good experiences to enhance policy learning.
TLeague: A Framework for Competitive Self-Play based Distributed Multi-Agent Reinforcement Learning
Sun, Peng, Xiong, Jiechao, Han, Lei, Sun, Xinghai, Li, Shuxing, Xu, Jiawei, Fang, Meng, Zhang, Zhengyou
Competitive Self-Play (CSP) based Multi-Agent Reinforcement Learning (MARL) has shown phenomenal breakthroughs recently. Strong AIs are achieved for several benchmarks, including Dota 2, Glory of Kings, Quake III, StarCraft II, to name a few. Despite the success, the MARL training is extremely data thirsty, requiring typically billions of (if not trillions of) frames be seen from the environment during training in order for learning a high performance agent. This poses non-trivial difficulties for researchers or engineers and prevents the application of MARL to a broader range of real-world problems. To address this issue, in this manuscript we describe a framework, referred to as TLeague, that aims at large-scale training and implements several main-stream CSP-MARL algorithms. The training can be deployed in either a single machine or a cluster of hybrid machines (CPUs and GPUs), where the standard Kubernetes is supported in a cloud native manner. TLeague achieves a high throughput and a reasonable scale-up when performing distributed training. Thanks to the modular design, it is also easy to extend for solving other multi-agent problems or implementing and verifying MARL algorithms. We present experiments over StarCraft II, ViZDoom and Pommerman to show the efficiency and effectiveness of TLeague. The code is open-sourced and available at https://github.com/tencent-ailab/tleague_projpage