Li, Shenghong
Way to Specialist: Closing Loop Between Specialized LLM and Evolving Domain Knowledge Graph
Zhang, Yutong, Chen, Lixing, Li, Shenghong, Cao, Nan, Shi, Yang, Ding, Jiaxin, Qu, Zhe, Zhou, Pan, Bai, Yang
Large language models (LLMs) have demonstrated exceptional performance across a wide variety of domains. Nonetheless, generalist LLMs continue to fall short in reasoning tasks necessitating specialized knowledge. Prior investigations into specialized LLMs focused on domain-specific training, which entails substantial efforts in domain data acquisition and model parameter fine-tuning. To address these challenges, this paper proposes the Way-to-Specialist (WTS) framework, which synergizes retrieval-augmented generation with knowledge graphs (KGs) to enhance the specialized capability of LLMs in the absence of specialized training. In distinction to existing paradigms that merely utilize external knowledge from general KGs or static domain KGs to prompt LLM for enhanced domain-specific reasoning, WTS proposes an innovative "LLM$\circlearrowright$KG" paradigm, which achieves bidirectional enhancement between specialized LLM and domain knowledge graph (DKG). The proposed paradigm encompasses two closely coupled components: the DKG-Augmented LLM and the LLM-Assisted DKG Evolution. The former retrieves question-relevant domain knowledge from DKG and uses it to prompt LLM to enhance the reasoning capability for domain-specific tasks; the latter leverages LLM to generate new domain knowledge from processed tasks and use it to evolve DKG. WTS closes the loop between DKG-Augmented LLM and LLM-Assisted DKG Evolution, enabling continuous improvement in the domain specialization as it progressively answers and learns from domain-specific questions. We validate the performance of WTS on 6 datasets spanning 5 domains. The experimental results show that WTS surpasses the previous SOTA in 4 specialized domains and achieves a maximum performance improvement of 11.3%.
DHBE: Data-free Holistic Backdoor Erasing in Deep Neural Networks via Restricted Adversarial Distillation
Yan, Zhicong, Li, Shenghong, Zhao, Ruijie, Tian, Yuan, Zhao, Yuanyuan
Backdoor attacks have emerged as an urgent threat to Deep Neural Networks (DNNs), where victim DNNs are furtively implanted with malicious neurons that could be triggered by the adversary. To defend against backdoor attacks, many works establish a staged pipeline to remove backdoors from victim DNNs: inspecting, locating, and erasing. However, in a scenario where a few clean data can be accessible, such pipeline is fragile and cannot erase backdoors completely without sacrificing model accuracy. To address this issue, in this paper, we propose a novel data-free holistic backdoor erasing (DHBE) framework. Instead of the staged pipeline, the DHBE treats the backdoor erasing task as a unified adversarial procedure, which seeks equilibrium between two different competing processes: distillation and backdoor regularization. In distillation, the backdoored DNN is distilled into a proxy model, transferring its knowledge about clean data, yet backdoors are simultaneously transferred. In backdoor regularization, the proxy model is holistically regularized to prevent from infecting any possible backdoor transferred from distillation. These two processes jointly proceed with data-free adversarial optimization until a clean, high-accuracy proxy model is obtained. With the novel adversarial design, our framework demonstrates its superiority in three aspects: 1) minimal detriment to model accuracy, 2) high tolerance for hyperparameters, and 3) no demand for clean data. Extensive experiments on various backdoor attacks and datasets are performed to verify the effectiveness of the proposed framework. Code is available at \url{https://github.com/yanzhicong/DHBE}
New Adversarial Image Detection Based on Sentiment Analysis
Wang, Yulong, Li, Tianxiang, Li, Shenghong, Yuan, Xin, Ni, Wei
Deep Neural Networks (DNNs) are vulnerable to adversarial examples, while adversarial attack models, e.g., DeepFool, are on the rise and outrunning adversarial example detection techniques. This paper presents a new adversarial example detector that outperforms state-of-the-art detectors in identifying the latest adversarial attacks on image datasets. Specifically, we propose to use sentiment analysis for adversarial example detection, qualified by the progressively manifesting impact of an adversarial perturbation on the hidden-layer feature maps of a DNN under attack. Accordingly, we design a modularized embedding layer with the minimum learnable parameters to embed the hidden-layer feature maps into word vectors and assemble sentences ready for sentiment analysis. Extensive experiments demonstrate that the new detector consistently surpasses the state-of-the-art detection algorithms in detecting the latest attacks launched against ResNet and Inception neutral networks on the CIFAR-10, CIFAR-100 and SVHN datasets. The detector only has about 2 million parameters, and takes shorter than 4.6 milliseconds to detect an adversarial example generated by the latest attack models using a Tesla K80 GPU card.
Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey
Wang, Yulong, Sun, Tong, Li, Shenghong, Yuan, Xin, Ni, Wei, Hossain, Ekram, Poor, H. Vincent
Adversarial attacks and defenses in machine learning and deep neural network have been gaining significant attention due to the rapidly growing applications of deep learning in the Internet and relevant scenarios. This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques, with a focus on deep neural network-based classification models. Specifically, we conduct a comprehensive classification of recent adversarial attack methods and state-of-the-art adversarial defense techniques based on attack principles, and present them in visually appealing tables and tree diagrams. This is based on a rigorous evaluation of the existing works, including an analysis of their strengths and limitations. We also categorize the methods into counter-attack detection and robustness enhancement, with a specific focus on regularization-based methods for enhancing robustness. New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks, and a hierarchical classification of the latest defense methods is provided, highlighting the challenges of balancing training costs with performance, maintaining clean accuracy, overcoming the effect of gradient masking, and ensuring method transferability. At last, the lessons learned and open challenges are summarized with future research opportunities recommended.
Leveraging AI and Intelligent Reflecting Surface for Energy-Efficient Communication in 6G IoT
Pan, Qianqian, Wu, Jun, Zheng, Xi, Li, Jianhua, Li, Shenghong, Vasilakos, Athanasios V.
The ever-increasing data traffic, various delay-sensitive services, and the massive deployment of energy-limited Internet of Things (IoT) devices have brought huge challenges to the current communication networks, motivating academia and industry to move to the sixth-generation (6G) network. With the powerful capability of data transmission and processing, 6G is considered as an enabler for IoT communication with low latency and energy cost. In this paper, we propose an artificial intelligence (AI) and intelligent reflecting surface (IRS) empowered energy-efficiency communication system for 6G IoT. First, we design a smart and efficient communication architecture including the IRS-aided data transmission and the AI-driven network resource management mechanisms. Second, an energy efficiency-maximizing model under given transmission latency for 6G IoT system is formulated, which jointly optimizes the settings of all communication participants, i.e. IoT transmission power, IRS-reflection phase shift, and BS detection matrix. Third, a deep reinforcement learning (DRL) empowered network resource control and allocation scheme is proposed to solve the formulated optimization model. Based on the network and channel status, the DRL-enabled scheme facilities the energy-efficiency and low-latency communication. Finally, experimental results verified the effectiveness of our proposed communication system for 6G IoT.
Joint learning of interpretation and distillation
Huang, Jinchao, Li, Guofu, Yan, Zhicong, Luo, Fucai, Li, Shenghong
The extra trust brought by the model interpretation has made it an indispensable part of machine learning systems. But to explain a distilled model's prediction, one may either work with the student model itself, or turn to its teacher model. This leads to a more fundamental question: if a distilled model should give a similar prediction for a similar reason as its teacher model on the same input? This question becomes even more crucial when the two models have dramatically different structure, taking GBDT2NN for example. This paper conducts an empirical study on the new approach to explaining each prediction of GBDT2NN, and how imitating the explanation can further improve the distillation process as an auxiliary learning task. Experiments on several benchmarks show that the proposed methods achieve better performance on both explanations and predictions.