Goto

Collaborating Authors

 Li, Shanglin


SPDIM: Source-Free Unsupervised Conditional and Label Shift Adaptation in EEG

arXiv.org Artificial Intelligence

The non-stationary nature of electroencephalography (EEG) introduces distribution shifts across domains (e.g., days and subjects), posing a significant challenge to EEG-based neurotechnology generalization. Without labeled calibration data for target domains, the problem is a source-free unsupervised domain adaptation (SFUDA) problem. For scenarios with constant label distribution, Riemannian geometry-aware statistical alignment frameworks on the symmetric positive definite (SPD) manifold are considered state-of-the-art. However, many practical scenarios, including EEG-based sleep staging, exhibit label shifts. Here, we propose a geometric deep learning framework for SFUDA problems under specific distribution shifts, including label shifts. We introduce a novel, realistic generative model and show that prior Riemannian statistical alignment methods on the SPD manifold can compensate for specific marginal and conditional distribution shifts but hurt generalization under label shifts. As a remedy, we propose a parameter-efficient manifold optimization strategy termed SPDIM. SPDIM uses the information maximization principle to learn a single SPD-manifold-constrained parameter per target domain. In simulations, we demonstrate that SPDIM can compensate for the shifts under our generative model. Moreover, using public EEG-based brain-computer interface and sleep staging datasets, we show that SPDIM outperforms prior approaches.


Federated Learning via Input-Output Collaborative Distillation

arXiv.org Artificial Intelligence

Federated learning (FL) is a machine learning paradigm in which distributed local nodes collaboratively train a central model without sharing individually held private data. Existing FL methods either iteratively share local model parameters or deploy co-distillation. However, the former is highly susceptible to private data leakage, and the latter design relies on the prerequisites of task-relevant real data. Instead, we propose a data-free FL framework based on local-to-central collaborative distillation with direct input and output space exploitation. Our design eliminates any requirement of recursive local parameter exchange or auxiliary task-relevant data to transfer knowledge, thereby giving direct privacy control to local users. In particular, to cope with the inherent data heterogeneity across locals, our technique learns to distill input on which each local model produces consensual yet unique results to represent each expertise. Our proposed FL framework achieves notable privacy-utility trade-offs with extensive experiments on image classification and segmentation tasks under various real-world heterogeneous federated learning settings on both natural and medical images.