Li, Shang-Wen
SelfCite: Self-Supervised Alignment for Context Attribution in Large Language Models
Chuang, Yung-Sung, Cohen-Wang, Benjamin, Shen, Shannon Zejiang, Wu, Zhaofeng, Xu, Hu, Lin, Xi Victoria, Glass, James, Li, Shang-Wen, Yih, Wen-tau
We introduce SelfCite, a novel self-supervised approach that aligns LLMs to generate high-quality, fine-grained, sentence-level citations for the statements in their generated responses. Instead of only relying on costly and labor-intensive annotations, SelfCite leverages a reward signal provided by the LLM itself through context ablation: If a citation is necessary, removing the cited text from the context should prevent the same response; if sufficient, retaining the cited text alone should preserve the same response. This reward can guide the inference-time best-of-N sampling strategy to improve citation quality significantly, as well as be used in preference optimization to directly fine-tune the models for generating better citations. The effectiveness of SelfCite is demonstrated by increasing citation F1 up to 5.3 points on the LongBench-Cite benchmark across five long-form question answering tasks.
How to Learn a New Language? An Efficient Solution for Self-Supervised Learning Models Unseen Languages Adaption in Low-Resource Scenario
Wang, Shih-Heng, Chen, Zih-Ching, Shi, Jiatong, Chuang, Ming-To, Lin, Guan-Ting, Huang, Kuan-Po, Harwath, David, Li, Shang-Wen, Lee, Hung-yi
The utilization of speech Self-Supervised Learning (SSL) models achieves impressive performance on Automatic Speech Recognition (ASR). However, in low-resource language ASR, they encounter the domain mismatch problem between pre-trained and low-resource languages. Typical solutions like fine-tuning the SSL model suffer from high computation costs while using frozen SSL models as feature extractors comes with poor performance. To handle these issues, we extend a conventional efficient fine-tuning scheme based on the adapter. We add an extra intermediate adaptation to warm up the adapter and downstream model initialization. Remarkably, we update only 1-5% of the total model parameters to achieve the adaptation. Experimental results on the ML-SUPERB dataset show that our solution outperforms conventional efficient fine-tuning. It achieves up to a 28% relative improvement in the Character/Phoneme error rate when adapting to unseen languages.
Altogether: Image Captioning via Re-aligning Alt-text
Xu, Hu, Huang, Po-Yao, Tan, Xiaoqing Ellen, Yeh, Ching-Feng, Kahn, Jacob, Jou, Christine, Ghosh, Gargi, Levy, Omer, Zettlemoyer, Luke, Yih, Wen-tau, Li, Shang-Wen, Xie, Saining, Feichtenhofer, Christoph
This paper focuses on creating synthetic data to improve the quality of image captions. Existing works typically have two shortcomings. First, they caption images from scratch, ignoring existing alt-text metadata, and second, lack transparency if the captioners' training data (e.g. GPT) is unknown. In this paper, we study a principled approach Altogether based on the key idea to edit and re-align existing alt-texts associated with the images. To generate training data, we perform human annotation where annotators start with the existing alt-text and re-align it to the image content in multiple rounds, consequently constructing captions with rich visual concepts. This differs from prior work that carries out human annotation as a one-time description task solely based on images and annotator knowledge. We train a captioner on this data that generalizes the process of re-aligning alt-texts at scale. Our results show our Altogether approach leads to richer image captions that also improve text-to-image generation and zero-shot image classification tasks.
VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild
Peng, Puyuan, Huang, Po-Yao, Li, Shang-Wen, Mohamed, Abdelrahman, Harwath, David
We introduce VoiceCraft, a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on audiobooks, internet videos, and podcasts. VoiceCraft employs a Transformer decoder architecture and introduces a token rearrangement procedure that combines causal masking and delayed stacking to enable generation within an existing sequence. On speech editing tasks, VoiceCraft produces edited speech that is nearly indistinguishable from unedited recordings in terms of naturalness, as evaluated by humans; for zero-shot TTS, our model outperforms prior SotA models including VALLE and the popular commercial model XTTS-v2. Crucially, the models are evaluated on challenging and realistic datasets, that consist of diverse accents, speaking styles, recording conditions, and background noise and music, and our model performs consistently well compared to other models and real recordings. In particular, for speech editing evaluation, we introduce a high quality, challenging, and realistic dataset named RealEdit. We encourage readers to listen to the demos at https://jasonppy.github.io/VoiceCraft_web.
A Large-Scale Evaluation of Speech Foundation Models
Yang, Shu-wen, Chang, Heng-Jui, Huang, Zili, Liu, Andy T., Lai, Cheng-I, Wu, Haibin, Shi, Jiatong, Chang, Xuankai, Tsai, Hsiang-Sheng, Huang, Wen-Chin, Feng, Tzu-hsun, Chi, Po-Han, Lin, Yist Y., Chuang, Yung-Sung, Huang, Tzu-Hsien, Tseng, Wei-Cheng, Lakhotia, Kushal, Li, Shang-Wen, Mohamed, Abdelrahman, Watanabe, Shinji, Lee, Hung-yi
The foundation model paradigm leverages a shared foundation model to achieve state-of-the-art (SOTA) performance for various tasks, requiring minimal downstream-specific modeling and data annotation. This approach has proven crucial in the field of Natural Language Processing (NLP). However, the speech processing community lacks a similar setup to explore the paradigm systematically. In this work, we establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the paradigm for speech. We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads. Combining our results with community submissions, we verify that the foundation model paradigm is promising for speech, and our multi-tasking framework is simple yet effective, as the best-performing foundation model shows competitive generalizability across most SUPERB tasks. For reproducibility and extensibility, we have developed a long-term maintained platform that enables deterministic benchmarking, allows for result sharing via an online leaderboard, and promotes collaboration through a community-driven benchmark database to support new development cycles. Finally, we conduct a series of analyses to offer an in-depth understanding of SUPERB and speech foundation models, including information flows across tasks inside the models, the correctness of the weighted-sum benchmarking protocol and the statistical significance and robustness of the benchmark.
Text Quality-Based Pruning for Efficient Training of Language Models
Sharma, Vasu, Padthe, Karthik, Ardalani, Newsha, Tirumala, Kushal, Howes, Russell, Xu, Hu, Huang, Po-Yao, Li, Shang-Wen, Aghajanyan, Armen, Ghosh, Gargi, Zettlemoyer, Luke
By leveraging attention in recent years due to their impressive this numerical text quality score, we demonstrate performance in various natural language processing how it can be used to prune the original dataset, (NLP) tasks (Zhang et al., 2022; Penedo et al., enabling the training of LMs using only a fraction 2023; Touvron et al., 2023; Zhou et al., 2023; Liu of the data. Our approach aims to identify et al., 2019). However, their training process often and eliminate low-quality text instances, thereby relies on computationally intensive procedures that streamlining the training process and mitigating the involve massive datasets and compute requirements burden of handling large-scale datasets. We also remove which hinders training large scale LMs on noisy potentially harmful content from the data by real-world or domain specific datasets. What's ensuring that harmful content is rated poorly by our worse is that several of these datasets are uncurated text quality score which can then be pruned. We and may contain harmful content which the observe an absolute improvement of 0.9% averaged LM model can potentially pick up during the training over 14 downstream evaluation tasks for multiple process (Deshpande et al., 2023; Schramowski LM models while using 40% lesser data and training et al., 2022; Kuchnik et al., 2023).
MoDE: CLIP Data Experts via Clustering
Ma, Jiawei, Huang, Po-Yao, Xie, Saining, Li, Shang-Wen, Zettlemoyer, Luke, Chang, Shih-Fu, Yih, Wen-Tau, Xu, Hu
The success of contrastive language-image pretraining (CLIP) relies on the supervision from the pairing between images and captions, which tends to be noisy in web-crawled data. We present Mixture of Data Experts (MoDE) and learn a system of CLIP data experts via clustering. Each data expert is trained on one data cluster, being less sensitive to false negative noises in other clusters. At inference time, we ensemble their outputs by applying weights determined through the correlation between task metadata and cluster conditions. To estimate the correlation precisely, the samples in one cluster should be semantically similar, but the number of data experts should still be reasonable for training and inference. As such, we consider the ontology in human language and propose to use fine-grained cluster centers to represent each data expert at a coarse-grained level. Experimental studies show that four CLIP data experts on ViT-B/16 outperform the ViT-L/14 by OpenAI CLIP and OpenCLIP on zero-shot image classification but with less ($<$35\%) training cost. Meanwhile, MoDE can train all data expert asynchronously and can flexibly include new data experts. The code is available at https://github.com/facebookresearch/MetaCLIP/tree/main/mode.
SpeechDPR: End-to-End Spoken Passage Retrieval for Open-Domain Spoken Question Answering
Lin, Chyi-Jiunn, Lin, Guan-Ting, Chuang, Yung-Sung, Wu, Wei-Lun, Li, Shang-Wen, Mohamed, Abdelrahman, Lee, Hung-yi, Lee, Lin-shan
Spoken Question Answering (SQA) is essential for machines to reply to user's question by finding the answer span within a given spoken passage. SQA has been previously achieved without ASR to avoid recognition errors and Out-of-Vocabulary (OOV) problems. However, the real-world problem of Open-domain SQA (openSQA), in which the machine needs to first retrieve passages that possibly contain the answer from a spoken archive in addition, was never considered. This paper proposes the first known end-to-end framework, Speech Dense Passage Retriever (SpeechDPR), for the retrieval component of the openSQA problem. SpeechDPR learns a sentence-level semantic representation by distilling knowledge from the cascading model of unsupervised ASR (UASR) and text dense retriever (TDR). No manually transcribed speech data is needed. Initial experiments showed performance comparable to the cascading model of UASR and TDR, and significantly better when UASR was poor, verifying this approach is more robust to speech recognition errors.
SD-HuBERT: Sentence-Level Self-Distillation Induces Syllabic Organization in HuBERT
Cho, Cheol Jun, Mohamed, Abdelrahman, Li, Shang-Wen, Black, Alan W, Anumanchipalli, Gopala K.
Data-driven unit discovery in self-supervised learning (SSL) of speech has embarked on a new era of spoken language processing. Yet, the discovered units often remain in phonetic space and the units beyond phonemes are largely underexplored. Here, we demonstrate that a syllabic organization emerges in learning sentence-level representation of speech. In particular, we adopt "self-distillation" objective to fine-tune the pretrained HuBERT with an aggregator token that summarizes the entire sentence. Without any supervision, the resulting model draws definite boundaries in speech, and the representations across frames exhibit salient syllabic structures. We demonstrate that this emergent structure largely corresponds to the ground truth syllables. Furthermore, we propose a new benchmark task, Spoken Speech ABX, for evaluating sentence-level representation of speech. When compared to previous models, our model outperforms in both unsupervised syllable discovery and learning sentence-level representation. Together, we demonstrate that the self-distillation of HuBERT gives rise to syllabic organization without relying on external labels or modalities, and potentially provides novel data-driven units for spoken language modeling.
GSQA: An End-to-End Model for Generative Spoken Question Answering
Shih, Min-Han, Chung, Ho-Lam, Pai, Yu-Chi, Hsu, Ming-Hao, Lin, Guan-Ting, Li, Shang-Wen, Lee, Hung-yi
In recent advancements in spoken question answering (QA), end-to-end models have made significant strides. However, previous research has primarily focused on extractive span selection. While this extractive-based approach is effective when answers are present directly within the input, it falls short in addressing abstractive questions, where answers are not directly extracted but inferred from the given information. To bridge this gap, we introduce the first end-to-end Generative Spoken Question Answering (GSQA) model that empowers the system to engage in abstractive reasoning. The challenge in training our GSQA model lies in the absence of a spoken abstractive QA dataset. We propose using text models for initialization and leveraging the extractive QA dataset to transfer knowledge from the text generative model to the spoken generative model. Experimental results indicate that our model surpasses the previous extractive model by 3% on extractive QA datasets. Furthermore, the GSQA model has only been fine-tuned on the spoken extractive QA dataset. Despite not having seen any spoken abstractive QA data, it can still closely match the performance of the cascade model. In conclusion, our GSQA model shows the potential to generalize to a broad spectrum of questions, thus further expanding the spoken question answering capabilities of abstractive QA. Our code is available at https://voidful.github.io/GSQA