Li, Ruochen
Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts
Zhu, Youxiang, Li, Ruochen, Wang, Danqing, Haehn, Daniel, Liang, Xiaohui
Long-context large language models (LLMs) are prone to be distracted by irrelevant contexts. The reason for distraction remains poorly understood. In this paper, we first identify the contextual heads, a special group of attention heads that control the overall attention of the LLM. Then, we demonstrate that distraction arises when contextual heads fail to allocate sufficient attention to relevant contexts and can be mitigated by increasing attention to these contexts. We further identify focus directions, located at the key and query activations of these heads, which enable them to allocate more attention to relevant contexts without explicitly specifying which context is relevant. We comprehensively evaluate the effect of focus direction on various long-context tasks and find out focus directions could help to mitigate the poor task alignment of the long-context LLMs. We believe our findings could promote further research on long-context LLM alignment.
CTS-CBS: A New Approach for Multi-Agent Collaborative Task Sequencing and Path Finding
Jiang, Junkai, Li, Ruochen, Yang, Yibin, Chen, Yihe, Wang, Yuning, Xu, Shaobing, Wang, Jianqiang
This paper addresses a generalization problem of Multi-Agent Pathfinding (MAPF), called Collaborative Task Sequencing - Multi-Agent Pathfinding (CTS-MAPF), where agents must plan collision-free paths and visit a series of intermediate task locations in a specific order before reaching their final destinations. To address this problem, we propose a new approach, Collaborative Task Sequencing - Conflict-Based Search (CTS-CBS), which conducts a two-level search. In the high level, it generates a search forest, where each tree corresponds to a joint task sequence derived from the jTSP solution. In the low level, CTS-CBS performs constrained single-agent path planning to generate paths for each agent while adhering to high-level constraints. We also provide heoretical guarantees of its completeness and optimality (or sub-optimality with a bounded parameter). To evaluate the performance of CTS-CBS, we create two datasets, CTS-MAPF and MG-MAPF, and conduct comprehensive experiments. The results show that CTS-CBS adaptations for MG-MAPF outperform baseline algorithms in terms of success rate (up to 20 times larger) and runtime (up to 100 times faster), with less than a 10% sacrifice in solution quality. Furthermore, CTS-CBS offers flexibility by allowing users to adjust the sub-optimality bound omega to balance between solution quality and efficiency. Finally, practical robot tests demonstrate the algorithm's applicability in real-world scenarios.
BP-SGCN: Behavioral Pseudo-Label Informed Sparse Graph Convolution Network for Pedestrian and Heterogeneous Trajectory Prediction
Li, Ruochen, Katsigiannis, Stamos, Kim, Tae-Kyun, Shum, Hubert P. H.
Trajectory prediction allows better decision-making in applications of autonomous vehicles or surveillance by predicting the short-term future movement of traffic agents. It is classified into pedestrian or heterogeneous trajectory prediction. The former exploits the relatively consistent behavior of pedestrians, but is limited in real-world scenarios with heterogeneous traffic agents such as cyclists and vehicles. The latter typically relies on extra class label information to distinguish the heterogeneous agents, but such labels are costly to annotate and cannot be generalized to represent different behaviors within the same class of agents. In this work, we introduce the behavioral pseudo-labels that effectively capture the behavior distributions of pedestrians and heterogeneous agents solely based on their motion features, significantly improving the accuracy of trajectory prediction. To implement the framework, we propose the Behavioral Pseudo-Label Informed Sparse Graph Convolution Network (BP-SGCN) that learns pseudo-labels and informs to a trajectory predictor. For optimization, we propose a cascaded training scheme, in which we first learn the pseudo-labels in an unsupervised manner, and then perform end-to-end fine-tuning on the labels in the direction of increasing the trajectory prediction accuracy. Experiments show that our pseudo-labels effectively model different behavior clusters and improve trajectory prediction. Our proposed BP-SGCN outperforms existing methods using both pedestrian (ETH/UCY, pedestrian-only SDD) and heterogeneous agent datasets (SDD, Argoverse 1).
Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction
Li, Ruochen, Qiao, Tanqiu, Katsigiannis, Stamos, Zhu, Zhanxing, Shum, Hubert P. H.
Pedestrian trajectory prediction aims to forecast future movements based on historical paths. Spatial-temporal (ST) methods often separately model spatial interactions among pedestrians and temporal dependencies of individuals. They overlook the direct impacts of interactions among different pedestrians across various time steps (i.e., high-order cross-time interactions). This limits their ability to capture ST inter-dependencies and hinders prediction performance. To address these limitations, we propose UniEdge with three major designs. Firstly, we introduce a unified ST graph data structure that simplifies high-order cross-time interactions into first-order relationships, enabling the learning of ST inter-dependencies in a single step. This avoids the information loss caused by multi-step aggregation. Secondly, traditional GNNs focus on aggregating pedestrian node features, neglecting the propagation of implicit interaction patterns encoded in edge features. We propose the Edge-to-Edge-Node-to-Node Graph Convolution (E2E-N2N-GCN), a novel dual-graph network that jointly models explicit N2N social interactions among pedestrians and implicit E2E influence propagation across these interaction patterns. Finally, to overcome the limited receptive fields and challenges in capturing long-range dependencies of auto-regressive architectures, we introduce a transformer encoder-based predictor that enables global modeling of temporal correlation. UniEdge outperforms state-of-the-arts on multiple datasets, including ETH, UCY, and SDD.
Learning to Generate Research Idea with Dynamic Control
Li, Ruochen, Jing, Liqiang, Han, Chi, Zhou, Jiawei, Du, Xinya
The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.