Goto

Collaborating Authors

 Li, Runnan


learning discriminative features from spectrograms using center loss for speech emotion recognition

arXiv.org Artificial Intelligence

Identifying the emotional state from speech is essential for the natural interaction of the machine with the speaker. However, extracting effective features for emotion recognition is difficult, as emotions are ambiguous. We propose a novel approach to learn discriminative features from variable length spectrograms for emotion recognition by cooperating softmax cross-entropy loss and center loss together. The softmax cross-entropy loss enables features from different emotion categories separable, and center loss efficiently pulls the features belonging to the same emotion category to their center. By combining the two losses together, the discriminative power will be highly enhanced, which leads to network learning more effective features for emotion recognition. As demonstrated by the experimental results, after introducing center loss, both the unweighted accuracy and weighted accuracy are improved by over 3\% on Mel-spectrogram input, and more than 4\% on Short Time Fourier Transform spectrogram input.


ERA-Solver: Error-Robust Adams Solver for Fast Sampling of Diffusion Probabilistic Models

arXiv.org Artificial Intelligence

Though denoising diffusion probabilistic models (DDPMs) have achieved remarkable generation results, the low sampling efficiency of DDPMs still limits further applications. Since DDPMs can be formulated as diffusion ordinary differential equations (ODEs), various fast sampling methods can be derived from solving diffusion ODEs. However, we notice that previous sampling methods with fixed analytical form are not robust with the error in the noise estimated from pretrained diffusion models. In this work, we construct an error-robust Adams solver (ERA-Solver), which utilizes the implicit Adams numerical method that consists of a predictor and a corrector. Different from the traditional predictor based on explicit Adams methods, we leverage a Lagrange interpolation function as the predictor, which is further enhanced with an error-robust strategy to adaptively select the Lagrange bases with lower error in the estimated noise. Experiments on Cifar10, LSUN-Church, and LSUN-Bedroom datasets demonstrate that our proposed ERA-Solver achieves 5.14, 9.42, and 9.69 Fenchel Inception Distance (FID) for image generation, with only 10 network evaluations.


Multi-Task Deep Learning for User Intention Understanding in Speech Interaction Systems

AAAI Conferences

Speech interaction systems have been gaining popularity in recent years. The main purpose of these systems is to generate more satisfactory responses according to users' speech utterances, in which the most critical problem is to analyze user intention. Researches show that user intention conveyed through speech is not only expressed by content, but also closely related with users' speaking manners (e.g. with or without acoustic emphasis). How to incorporate these heterogeneous attributes to infer user intention remains an open problem. In this paper, we define Intention Prominence (IP) as the semantic combination of focus by text and emphasis by speech, and propose a multi-task deep learning framework to predict IP. Specifically, we first use long short-term memory (LSTM) which is capable of modeling long short-term contextual dependencies to detect focus and emphasis, and incorporate the tasks for focus and emphasis detection with multi-task learning (MTL) to reinforce the performance of each other. We then employ Bayesian network (BN) to incorporate multimodal features (focus, emphasis, and location reflecting users' dialect conventions) to predict IP based on feature correlations. Experiments on a data set of 135,566 utterances collected from real-world Sogou Voice Assistant illustrate that our method can outperform the comparison methods over 6.9-24.5% in terms of F1-measure. Moreover, a real practice in the Sogou Voice Assistant indicates that our method can improve the performance on user intention understanding by 7%.