Li, Qingnan
Asynchronous Dynamics of Continuous Time Neural Networks
Wang, Xin, Li, Qingnan, Blum, Edward K.
Motivated by mathematical modeling, analog implementation and distributed simulation of neural networks, we present a definition of asynchronous dynamics of general CT dynamical systems defined by ordinary differential equations, based on notions of local times and communication times. We provide some preliminary results on globally asymptotical convergence of asynchronous dynamics for contractive and monotone CT dynamical systems. When applying the results to neural networks, we obtain some conditions that ensure additive-type neural networks to be asynchronizable.
Asynchronous Dynamics of Continuous Time Neural Networks
Wang, Xin, Li, Qingnan, Blum, Edward K.
Motivated by mathematical modeling, analog implementation and distributed simulation of neural networks, we present a definition of asynchronous dynamics of general CT dynamical systems defined by ordinary differential equations, based on notions of local times and communication times. We provide some preliminary results on globally asymptotical convergence of asynchronous dynamics for contractive and monotone CT dynamical systems. When applying the results to neural networks, we obtain some conditions that ensure additive-type neural networks to be asynchronizable.
Asynchronous Dynamics of Continuous Time Neural Networks
Wang, Xin, Li, Qingnan, Blum, Edward K.
Motivated by mathematical modeling, analog implementation and distributed simulation of neural networks, we present a definition of asynchronous dynamics of general CT dynamical systems defined by ordinary differential equations, based on notions of local times and communication times. We provide some preliminary results on globally asymptotical convergence of asynchronous dynamics for contractive and monotone CT dynamical systems. When applying theresults to neural networks, we obtain some conditions that ensure additive-type neural networks to be asynchronizable.