Goto

Collaborating Authors

 Li, Qingli


Prompting Whole Slide Image Based Genetic Biomarker Prediction

arXiv.org Artificial Intelligence

Prediction of genetic biomarkers, e.g., microsatellite instability and BRAF in colorectal cancer is crucial for clinical decision making. In this paper, we propose a whole slide image (WSI) based genetic biomarker prediction method via prompting techniques. Our work aims at addressing the following challenges: (1) extracting foreground instances related to genetic biomarkers from gigapixel WSIs, and (2) the interaction among the fine-grained pathological components in WSIs. Specifically, we leverage large language models to generate medical prompts that serve as prior knowledge in extracting instances associated with genetic biomarkers. We adopt a coarse-to-fine approach to mine biomarker information within the tumor microenvironment. This involves extracting instances related to genetic biomarkers using coarse medical prior knowledge, grouping pathology instances into fine-grained pathological components and mining their interactions. Experimental results on two colorectal cancer datasets show the superiority of our method, achieving 91.49% in AUC for MSI classification. The analysis further shows the clinical interpretability of our method.


Atrial Septal Defect Detection in Children Based on Ultrasound Video Using Multiple Instances Learning

arXiv.org Artificial Intelligence

Purpose: Congenital heart defect (CHD) is the most common birth defect. Thoracic echocardiography (TTE) can provide sufficient cardiac structure information, evaluate hemodynamics and cardiac function, and is an effective method for atrial septal defect (ASD) examination. This paper aims to study a deep learning method based on cardiac ultrasound video to assist in ASD diagnosis. Materials and methods: We select two standard views of the atrial septum (subAS) and low parasternal four-compartment view (LPS4C) as the two views to identify ASD. We enlist data from 300 children patients as part of a double-blind experiment for five-fold cross-validation to verify the performance of our model. In addition, data from 30 children patients (15 positives and 15 negatives) are collected for clinician testing and compared to our model test results (these 30 samples do not participate in model training). We propose an echocardiography video-based atrial septal defect diagnosis system. In our model, we present a block random selection, maximal agreement decision and frame sampling strategy for training and testing respectively, resNet18 and r3D networks are used to extract the frame features and aggregate them to build a rich video-level representation. Results: We validate our model using our private dataset by five-cross validation. For ASD detection, we achieve 89.33 AUC, 84.95 accuracy, 85.70 sensitivity, 81.51 specificity and 81.99 F1 score. Conclusion: The proposed model is multiple instances learning-based deep learning model for video atrial septal defect detection which effectively improves ASD detection accuracy when compared to the performances of previous networks and clinical doctors.


Angel's Girl for Blind Painters: an Efficient Painting Navigation System Validated by Multimodal Evaluation Approach

arXiv.org Artificial Intelligence

For people who ardently love painting but unfortunately have visual impairments, holding a paintbrush to create a work is a very difficult task. People in this special group are eager to pick up the paintbrush, like Leonardo da Vinci, to create and make full use of their own talents. Therefore, to maximally bridge this gap, we propose a painting navigation system to assist blind people in painting and artistic creation. The proposed system is composed of cognitive system and guidance system. The system adopts drawing board positioning based on QR code, brush navigation based on target detection and bush real-time positioning. Meanwhile, this paper uses human-computer interaction on the basis of voice and a simple but efficient position information coding rule. In addition, we design a criterion to efficiently judge whether the brush reaches the target or not. According to the experimental results, the thermal curves extracted from the faces of testers show that it is relatively well accepted by blindfolded and even blind testers. With the prompt frequency of 1s, the painting navigation system performs best with the completion degree of 89% with SD of 8.37% and overflow degree of 347% with SD of 162.14%. Meanwhile, the excellent and good types of brush tip trajectory account for 74%, and the relative movement distance is 4.21 with SD of 2.51. This work demonstrates that it is practicable for the blind people to feel the world through the brush in their hands. In the future, we plan to deploy Angle's Eyes on the phone to make it more portable. The demo video of the proposed painting navigation system is available at: https://doi.org/10.6084/m9.figshare.9760004.v1.