Collaborating Authors

Li, Qian

Leveraging Multi-level Dependency of Relational Sequences for Social Spammer Detection Machine Learning

Much recent research has shed light on the development of the relation-dependent but content-independent framework for social spammer detection. This is largely because the relation among users is difficult to be altered when spammers attempt to conceal their malicious intents. Our study investigates the spammer detection problem in the context of multi-relation social networks, and makes an attempt to fully exploit the sequences of heterogeneous relations for enhancing the detection accuracy. Specifically, we present the Multi-level Dependency Model (MDM). The MDM is able to exploit user's long-term dependency hidden in their relational sequences along with short-term dependency. Moreover, MDM fully considers short-term relational sequences from the perspectives of individual-level and union-level, due to the fact that the type of short-term sequences is multi-folds. Experimental results on a real-world multi-relational social network demonstrate the effectiveness of our proposed MDM on multi-relational social spammer detection.

Causality Learning: A New Perspective for Interpretable Machine Learning Artificial Intelligence

Recent years have witnessed the rapid growth of machine learning in a wide range of fields such as image recognition, text classification, credit scoring prediction, recommendation system, etc. In spite of their great performance in different sectors, researchers still concern about the mechanism under any machine learning (ML) techniques that are inherently black-box and becoming more complex to achieve higher accuracy. Therefore, interpreting machine learning model is currently a mainstream topic in the research community. However, the traditional interpretable machine learning focuses on the association instead of the causality. This paper provides an overview of causal analysis with the fundamental background and key concepts, and then summarizes most recent causal approaches for interpretable machine learning. The evaluation techniques for assessing method quality, and open problems in causal interpretability are also discussed in this paper.

Stochastic Batch Augmentation with An Effective Distilled Dynamic Soft Label Regularizer Machine Learning

Data augmentation have been intensively used in training deep neural network to improve the generalization, whether in original space (e.g., image space) or representation space. Although being successful, the connection between the synthesized data and the original data is largely ignored in training, without considering the distribution information that the synthesized samples are surrounding the original sample in training. Hence, the behavior of the network is not optimized for this. However, that behavior is crucially important for generalization, even in the adversarial setting, for the safety of the deep learning system. In this work, we propose a framework called Stochastic Batch Augmentation (SBA) to address these problems. SBA stochastically decides whether to augment at iterations controlled by the batch scheduler and in which a ''distilled'' dynamic soft label regularization is introduced by incorporating the similarity in the vicinity distribution respect to raw samples. The proposed regularization provides direct supervision by the KL-Divergence between the output soft-max distributions of original and virtual data. Our experiments on CIFAR-10, CIFAR-100, and ImageNet show that SBA can improve the generalization of the neural networks and speed up the convergence of network training.

Triaging moderate COVID-19 and other viral pneumonias from routine blood tests Machine Learning

The COVID-19 is sweeping the world with deadly consequences. Its contagious nature and clinical similarity to other pneumonias make separating subjects contracted with COVID-19 and non-COVID-19 viral pneumonia a priority and a challenge. However, COVID-19 testing has been greatly limited by the availability and cost of existing methods, even in developed countries like the US. Intrigued by the wide availability of routine blood tests, we propose to leverage them for COVID-19 testing using the power of machine learning. Two proven-robust machine learning model families, random forests (RFs) and support vector machines (SVMs), are employed to tackle the challenge. Trained on blood data from 208 moderate COVID-19 subjects and 86 subjects with non-COVID-19 moderate viral pneumonia, the best result is obtained in an SVM-based classifier with an accuracy of 84%, a sensitivity of 88%, a specificity of 80%, and a precision of 92%. The results are found explainable from both machine learning and medical perspectives. A privacy-protected web portal is set up to help medical personnel in their practice and the trained models are released for developers to further build other applications. We hope our results can help the world fight this pandemic and welcome clinical verification of our approach on larger populations.

Neighborhood Information-based Probabilistic Algorithm for Network Disintegration Artificial Intelligence

Many real-world applications can be modelled as complex networks, and such networks include the Internet, epidemic disease networks, transport networks, power grids, protein-folding structures and others. Network integrity and robustness are important to ensure that crucial networks are protected and undesired harmful networks can be dismantled. Network structure and integrity can be controlled by a set of key nodes, and to find the optimal combination of nodes in a network to ensure network structure and integrity can be an NP-complete problem. Despite extensive studies, existing methods have many limitations and there are still many unresolved problems. This paper presents a probabilistic approach based on neighborhood information and node importance, namely, neighborhood information-based probabilistic algorithm (NIPA). We also define a new centrality-based importance measure (IM), which combines the contribution ratios of the neighbor nodes of each target node and two-hop node information. Our proposed NIPA has been tested for different network benchmarks and compared with three other methods: optimal attack strategy (OAS), high betweenness first (HBF) and high degree first (HDF). Experiments suggest that the proposed NIPA is most effective among all four methods. In general, NIPA can identify the most crucial node combination with higher effectiveness, and the set of optimal key nodes found by our proposed NIPA is much smaller than that by heuristic centrality prediction. In addition, many previously neglected weakly connected nodes are identified, which become a crucial part of the newly identified optimal nodes. Thus, revised strategies for protection are recommended to ensure the safeguard of network integrity. Further key issues and future research topics are also discussed.

Triple Memory Networks: a Brain-Inspired Method for Continual Learning Machine Learning

Continual acquisition of novel experience without interfering previously learned knowledge, i.e. continual learning, is critical for artificial neural networks, but limited by catastrophic forgetting. A neural network adjusts its parameters when learning a new task, but then fails to conduct the old tasks well. By contrast, the brain has a powerful ability to continually learn new experience without catastrophic interference. The underlying neural mechanisms possibly attribute to the interplay of hippocampus-dependent memory system and neocortex-dependent memory system, mediated by prefrontal cortex. Specifically, the two memory systems develop specialized mechanisms to consolidate information as more specific forms and more generalized forms, respectively, and complement the two forms of information in the interplay. Inspired by such brain strategy, we propose a novel approach named triple memory networks (TMNs) for continual learning. TMNs model the interplay of hippocampus, prefrontal cortex and sensory cortex (a neocortex region) as a triple-network architecture of generative adversarial networks (GAN). The input information is encoded as specific representation of the data distributions in a generator, or generalized knowledge of solving tasks in a discriminator and a classifier, with implementing appropriate brain-inspired algorithms to alleviate catastrophic forgetting in each module. Particularly, the generator replays generated data of the learned tasks to the discriminator and the classifier, both of which are implemented with a weight consolidation regularizer to complement the lost information in generation process. TMNs achieve new state-of-the-art performance on a variety of class-incremental learning benchmarks on MNIST, SVHN, CIFAR-10 and ImageNet-50, comparing with strong baseline methods.

Are You for Real? Detecting Identity Fraud via Dialogue Interactions Artificial Intelligence

Identity fraud detection is of great importance in many real-world scenarios such as the financial industry. However, few studies addressed this problem before. In this paper, we focus on identity fraud detection in loan applications and propose to solve this problem with a novel interactive dialogue system which consists of two modules. One is the knowledge graph (KG) constructor organizing the personal information for each loan applicant. The other is structured dialogue management that can dynamically generate a series of questions based on the personal KG to ask the applicants and determine their identity states. We also present a heuristic user simulator based on problem analysis to evaluate our method. Experiments have shown that the trainable dialogue system can effectively detect fraudsters, and achieve higher recognition accuracy compared with rule-based systems. Furthermore, our learned dialogue strategies are interpretable and flexible, which can help promote real-world applications.

Riemannian Submanifold Tracking on Low-Rank Algebraic Variety

AAAI Conferences

Matrix recovery aims to learn a low-rank structure from high dimensional data, which arises in numerous learning applications. As a popular heuristic to matrix recovery, convex relaxation involves iterative calling of singular value decomposition (SVD). Riemannian optimization based method can alleviate such expensive cost in SVD for improved scalability, which however is usually degraded by the unknown rank. This paper proposes a novel algorithm RIST that exploits the algebraic variety of low-rank manifold for matrix recovery. Particularly, RIST utilizes an efficient scheme that automatically estimate the potential rank on the real algebraic variety and tracks the favorable Riemannian submanifold. Moreover, RIST utilizes the second-order geometric characterization and achieves provable superlinear convergence, which is superior to the linear convergence of most existing methods. Extensive comparison experiments demonstrate the accuracy and ef- ficiency of RIST algorithm.

Efficient Delivery Policy to Minimize User Traffic Consumption in Guaranteed Advertising

AAAI Conferences

In this work, we study the guaranteed delivery model which is widely used in online advertising. In the guaranteed delivery scenario, ad exposures (which are also called impressions in some works) to users are guaranteed by contracts signed in advance between advertisers and publishers. A crucial problem for the advertising platform is how to fully utilize the valuable user traffic to generate as much as possible revenue. Different from previous works which usually minimize the penalty of unsatisfied contracts and some other cost (e.g. representativeness), we propose the novel consumption minimization model, in which the primary objective is to minimize the user traffic consumed to satisfy all contracts. Under this model, we develop a near optimal method to deliver ads for users. The main advantage of our method lies in that it consumes nearly as least as possible user traffic to satisfy all contracts, therefore more contracts can be accepted to produce more revenue. It also enables the publishers to estimate how much user traffic is redundant or short so that they can sell or buy this part of traffic in bulk in the exchange market. Furthermore, it is robust with regard to priori knowledge of user type distribution. Finally, the simulation shows that our method outperforms the traditional state-of-the-art methods.