Goto

Collaborating Authors

 Li, Pengxiang


Finetuning Generative Trajectory Model with Reinforcement Learning from Human Feedback

arXiv.org Artificial Intelligence

Generating human-like and adaptive trajectories is essential for autonomous driving in dynamic environments. While generative models have shown promise in synthesizing feasible trajectories, they often fail to capture the nuanced variability of human driving styles due to dataset biases and distributional shifts. To address this, we introduce TrajHF, a human feedback-driven finetuning framework for generative trajectory models, designed to align motion planning with diverse driving preferences. TrajHF incorporates multi-conditional denoiser and reinforcement learning with human feedback to refine multi-modal trajectory generation beyond conventional imitation learning. This enables better alignment with human driving preferences while maintaining safety and feasibility constraints. TrajHF achieves PDMS of 93.95 on NavSim benchmark, significantly exceeding other methods. TrajHF sets a new paradigm for personalized and adaptable trajectory generation in autonomous driving.


InfiR : Crafting Effective Small Language Models and Multimodal Small Language Models in Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have made significant advancements in reasoning capabilities. However, they still face challenges such as high computational demands and privacy concerns. This paper focuses on developing efficient Small Language Models (SLMs) and Multimodal Small Language Models (MSLMs) that retain competitive reasoning abilities. We introduce a novel training pipeline that enhances reasoning capabilities and facilitates deployment on edge devices, achieving state-of-the-art performance while minimizing development costs. \InfR~ aims to advance AI systems by improving reasoning, reducing adoption barriers, and addressing privacy concerns through smaller model sizes. Resources are available at https://github. com/Reallm-Labs/InfiR.


The Curse of Depth in Large Language Models

arXiv.org Artificial Intelligence

In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models(LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling, which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Our experimental results, spanning model sizes from 130M to 1B, demonstrate that LayerNorm Scaling significantly enhances LLM pre-training performance compared to Pre-LN. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training.


InfiGUIAgent: A Multimodal Generalist GUI Agent with Native Reasoning and Reflection

arXiv.org Artificial Intelligence

Graphical User Interface (GUI) Agents, powered by multimodal large language models (MLLMs), have shown great potential for task automation on computing devices such as computers and mobile phones. However, existing agents face challenges in multi-step reasoning and reliance on textual annotations, limiting their effectiveness. We introduce \textit{InfiGUIAgent}, an MLLM-based GUI Agent trained with a two-stage supervised fine-tuning pipeline. Stage 1 enhances fundamental skills such as GUI understanding and grounding, while Stage 2 integrates hierarchical reasoning and expectation-reflection reasoning skills using synthesized data to enable native reasoning abilities of the agents. \textit{InfiGUIAgent} achieves competitive performance on several GUI benchmarks, highlighting the impact of native reasoning skills in enhancing GUI interaction for automation tasks. Resources are available at \url{https://github.com/Reallm-Labs/InfiGUIAgent}.


Multi-modal Agent Tuning: Building a VLM-Driven Agent for Efficient Tool Usage

arXiv.org Artificial Intelligence

Query: I want to buy a PS5 for each child in the photo. Thought: Use the `facedetection` tool to detect Thought: First analyze the image 1 to find the number human faces in the two images. Faces in Image 1: 4 bounding boxes Thought: There are 4 children in total. The price of Price of PS5: $479.99 a PS5 is approximately $500, so the cost is 4* 500. Thought: Using the price of $479.99 for each console. Query: The men in the picture want to buy one NVIDIA GeForce RTX 4070 SUPER each. According to the price in January, how many dollars will they need to spend in total? Observation: This image does not provide any price. On January 8, 2024, Nvidia released the RTX Thought: I cannot obtain useful information. I 4070 SUPER at $599, think the price is about $1800 for three men. Thought: The price is $599. Our agent chooses more precise tools based on the given files and intermediate observations. The advancement of large language models (LLMs) prompts the development of multi-modal agents, which are used as a controller to call external tools, providing a feasible way to solve practical tasks. In this paper, we propose a multi-modal agent tuning method that automatically generates multi-modal tool-usage data and tunes a vision-language model (VLM) as the controller for powerful tool-usage reasoning. To preserve the data quality, we prompt the GPT-4o mini model to generate queries, files, and trajectories, followed by query-file and trajectory verifiers. Based on the data synthesis pipeline, we collect the MM-Traj dataset that contains 20K tasks with trajectories of tool usage. Then, we develop the T3-Agent via Trajectory Tuning on VLMs for Tool usage using MM-Traj. Evaluations on the GTA and GAIA benchmarks show that the T3-Agent consistently achieves improvements on two popular VLMs: MiniCPM-V-8.5B Integrating external tools to solve diverse multi-modal tasks is a promising research direction towards multi-modal agents (Surรญs et al., 2023; Gupta & Kembhavi, 2023; Gao et al., 2024; Yuan et al., 2024; Zhong et al., 2023). Existing agents usually use a large language model (LLM) as the controller that generates plans via prompt engineering to call tools, achieving impressive performance in multiple domains, such as image editing (Wu et al., 2023), robotic manipulation (ichter et al., 2023), question answering (Shen et al., 2024), video understanding (Fan et al., 2024), and desktop APPs (Trivedi et al., 2024). Despite their success, prompt engineering faces limited reasoning abilities for tool usage in tackling practical tasks, as shown in Figure 1.


Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradients across layers. This allows all parts of the network--both shallow and deep layers--to contribute effectively to training. Extensive experiments with various model sizes from 70M to 7B demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size. Our code is available at https://github.com/pixeli99/MixLN.


Poetry2Image: An Iterative Correction Framework for Images Generated from Chinese Classical Poetry

arXiv.org Artificial Intelligence

Text-to-image generation models often struggle with key element loss or semantic confusion in tasks involving Chinese classical poetry.Addressing this issue through fine-tuning models needs considerable training costs. Additionally, manual prompts for re-diffusion adjustments need professional knowledge. To solve this problem, we propose Poetry2Image, an iterative correction framework for images generated from Chinese classical poetry. Utilizing an external poetry dataset, Poetry2Image establishes an automated feedback and correction loop, which enhances the alignment between poetry and image through image generation models and subsequent re-diffusion modifications suggested by large language models (LLM). Using a test set of 200 sentences of Chinese classical poetry, the proposed method--when integrated with five popular image generation models--achieves an average element completeness of 70.63%, representing an improvement of 25.56% over direct image generation. In tests of semantic correctness, our method attains an average semantic consistency of 80.09%. The study not only promotes the dissemination of ancient poetry culture but also offers a reference for similar non-fine-tuning methods to enhance LLM generation.


OwLore: Outlier-weighed Layerwise Sampled Low-Rank Projection for Memory-Efficient LLM Fine-tuning

arXiv.org Artificial Intelligence

The rapid advancements in Large Language Models (LLMs) have revolutionized various natural language processing tasks. However, the substantial size of LLMs presents significant challenges in training or fine-tuning. While parameter-efficient approaches such as low-rank adaptation (LoRA) have gained popularity, they often compromise performance compared to full-rank fine-tuning. In this paper, we propose Outlier-weighed Layerwise Sampled Low-Rank Projection (OwLore), a new memory-efficient fine-tuning approach, inspired by the layerwise outlier distribution of LLMs, which dynamically samples pre-trained layers to fine-tune instead of adding additional adaptors. We first interpret the outlier phenomenon through the lens of Heavy-Tailed Self-Regularization theory (HT-SR), discovering that layers with more outliers tend to be more heavy-tailed and consequently better trained. Inspired by this finding, OwLore strategically assigns higher sampling probabilities to layers with more outliers to better leverage the knowledge stored in pre-trained LLMs. To further mitigate the memory demands of fine-tuning, we integrate gradient low-rank projection into our approach, which facilitates each layer to be efficiently trained in a low-rank manner. By incorporating the efficient characteristics of low-rank and optimal layerwise sampling, OwLore significantly improves the memory-performance trade-off in LLM pruning. Our extensive experiments across various architectures, including LLaMa2, LLaMa3, and Mistral, demonstrate that OwLore consistently outperforms baseline approaches, including full fine-tuning. Specifically, it achieves up to a 1.1% average accuracy gain on the Commonsense Reasoning benchmark, a 3.0% improvement on MMLU, and a notable 10% boost on MT-Bench, while being more memory efficient. OwLore allows us to fine-tune LLaMa2-7B with only 21GB of memory.


TrackDiffusion: Multi-object Tracking Data Generation via Diffusion Models

arXiv.org Artificial Intelligence

Diffusion models have gained prominence in generating data for perception tasks such as image classification and object detection. However, the potential in generating high-quality tracking sequences, a crucial aspect in the field of video perception, has not been fully investigated. To address this gap, we propose TrackDiffusion, a novel architecture designed to generate continuous video sequences from the tracklets. TrackDiffusion represents a significant departure from the traditional layout-to-image (L2I) generation and copy-paste synthesis focusing on static image elements like bounding boxes by empowering image diffusion models to encompass dynamic and continuous tracking trajectories, thereby capturing complex motion nuances and ensuring instance consistency among video frames. For the first time, we demonstrate that the generated video sequences can be utilized for training multi-object tracking (MOT) systems, leading to significant improvement in tracker performance. Experimental results show that our model significantly enhances instance consistency in generated video sequences, leading to improved perceptual metrics. Our approach achieves an improvement of 8.7 in TrackAP and 11.8 in TrackAP$_{50}$ on the YTVIS dataset, underscoring its potential to redefine the standards of video data generation for MOT tasks and beyond.