Li, Muheng
Reheated Gradient-based Discrete Sampling for Combinatorial Optimization
Li, Muheng, Zhang, Ruqi
Recently, gradient-based discrete sampling has emerged as a highly efficient, general-purpose solver for various combinatorial optimization (CO) problems, achieving performance comparable to or surpassing the popular data-driven approaches. However, we identify a critical issue in these methods, which we term ''wandering in contours''. This behavior refers to sampling new different solutions that share very similar objective values for a long time, leading to computational inefficiency and suboptimal exploration of potential solutions. In this paper, we introduce a novel reheating mechanism inspired by the concept of critical temperature and specific heat in physics, aimed at overcoming this limitation. Empirically, our method demonstrates superiority over existing sampling-based and data-driven algorithms across a diverse array of CO problems.
Solving Urban Network Security Games: Learning Platform, Benchmark, and Challenge for AI Research
Zhuang, Shuxin, Li, Shuxin, Yang, Tianji, Li, Muheng, Shi, Xianjie, An, Bo, Zhang, Youzhi
After the great achievement of solving two-player zero-sum games, more and more AI researchers focus on solving multiplayer games. To facilitate the development of designing efficient learning algorithms for solving multiplayer games, we propose a multiplayer game platform for solving Urban Network Security Games (\textbf{UNSG}) that model real-world scenarios. That is, preventing criminal activity is a highly significant responsibility assigned to police officers in cities, and police officers have to allocate their limited security resources to interdict the escaping criminal when a crime takes place in a city. This interaction between multiple police officers and the escaping criminal can be modeled as a UNSG. The variants of UNSGs can model different real-world settings, e.g., whether real-time information is available or not, and whether police officers can communicate or not. The main challenges of solving this game include the large size of the game and the co-existence of cooperation and competition. While previous efforts have been made to tackle UNSGs, they have been hampered by performance and scalability issues. Therefore, we propose an open-source UNSG platform (\textbf{GraphChase}) for designing efficient learning algorithms for solving UNSGs. Specifically, GraphChase offers a unified and flexible game environment for modeling various variants of UNSGs, supporting the development, testing, and benchmarking of algorithms. We believe that GraphChase not only facilitates the development of efficient algorithms for solving real-world problems but also paves the way for significant advancements in algorithmic development for solving general multiplayer games.
Sine Wave Normalization for Deep Learning-Based Tumor Segmentation in CT/PET Imaging
Ren, Jintao, Li, Muheng, Korreman, Stine Sofia
This report presents a normalization block for automated tumor segmentation in CT/PET scans, developed for the autoPET III Challenge. The key innovation is the introduction of the SineNormal, which applies periodic sine transformations to PET data to enhance lesion detection. By highlighting intensity variations and producing concentric ring patterns in PET highlighted regions, the model aims to improve segmentation accuracy, particularly for challenging multitracer PET datasets. The code for this project is available on GitHub.
Diffusion-SDF: Text-to-Shape via Voxelized Diffusion
Li, Muheng, Duan, Yueqi, Zhou, Jie, Lu, Jiwen
With the rising industrial attention to 3D virtual modeling technology, generating novel 3D content based on specified conditions (e.g. text) has become a hot issue. In this paper, we propose a new generative 3D modeling framework called Diffusion-SDF for the challenging task of text-to-shape synthesis. Previous approaches lack flexibility in both 3D data representation and shape generation, thereby failing to generate highly diversified 3D shapes conforming to the given text descriptions. To address this, we propose a SDF autoencoder together with the Voxelized Diffusion model to learn and generate representations for voxelized signed distance fields (SDFs) of 3D shapes. Specifically, we design a novel UinU-Net architecture that implants a local-focused inner network inside the standard U-Net architecture, which enables better reconstruction of patch-independent SDF representations. We extend our approach to further text-to-shape tasks including text-conditioned shape completion and manipulation. Experimental results show that Diffusion-SDF generates both higher quality and more diversified 3D shapes that conform well to given text descriptions when compared to previous approaches. Code is available at: https://github.com/ttlmh/Diffusion-SDF