Goto

Collaborating Authors

 Li, Miqing


Distilled Lifelong Self-Adaptation for Configurable Systems

arXiv.org Artificial Intelligence

Modern configurable systems provide tremendous opportunities for engineering future intelligent software systems. A key difficulty thereof is how to effectively self-adapt the configuration of a running system such that its performance (e.g., runtime and throughput) can be optimized under time-varying workloads. This unfortunately remains unaddressed in existing approaches as they either overlook the available past knowledge or rely on static exploitation of past knowledge without reasoning the usefulness of information when planning for self-adaptation. In this paper, we tackle this challenging problem by proposing DLiSA, a framework that self-adapts configurable systems. DLiSA comes with two properties: firstly, it supports lifelong planning, and thereby the planning process runs continuously throughout the lifetime of the system, allowing dynamic exploitation of the accumulated knowledge for rapid adaptation. Secondly, the planning for a newly emerged workload is boosted via distilled knowledge seeding, in which the knowledge is dynamically purified such that only useful past configurations are seeded when necessary, mitigating misleading information. Extensive experiments suggest that the proposed DLiSA significantly outperforms state-of-the-art approaches, demonstrating a performance improvement of up to 229% and a resource acceleration of up to 2.22x on generating promising adaptation configurations. All data and sources can be found at our repository: https://github.com/ideas-labo/dlisa.


Adapting Multi-objectivized Software Configuration Tuning

arXiv.org Artificial Intelligence

When tuning software configuration for better performance (e.g., latency or throughput), an important issue that many optimizers face is the presence of local optimum traps, compounded by a highly rugged configuration landscape and expensive measurements. To mitigate these issues, a recent effort has shifted to focus on the level of optimization model (called meta multi-objectivization or MMO) instead of designing better optimizers as in traditional methods. This is done by using an auxiliary performance objective, together with the target performance objective, to help the search jump out of local optima. While effective, MMO needs a fixed weight to balance the two objectives-a parameter that has been found to be crucial as there is a large deviation of the performance between the best and the other settings. However, given the variety of configurable software systems, the "sweet spot" of the weight can vary dramatically in different cases and it is not possible to find the right setting without time-consuming trial and error. In this paper, we seek to overcome this significant shortcoming of MMO by proposing a weight adaptation method, dubbed AdMMO. Our key idea is to adaptively adjust the weight at the right time during tuning, such that a good proportion of the nondominated configurations can be maintained. Moreover, we design a partial duplicate retention mechanism to handle the issue of too many duplicate configurations without losing the rich information provided by the "good" duplicates. Experiments on several real-world systems, objectives, and budgets show that, for 71% of the cases, AdMMO is considerably superior to MMO and a wide range of state-of-the-art optimizers while achieving generally better efficiency with the best speedup between 2.2x and 20x.


Stochastic Population Update Can Provably Be Helpful in Multi-Objective Evolutionary Algorithms

arXiv.org Artificial Intelligence

Evolutionary algorithms (EAs) have been widely and successfully applied to solve multi-objective optimization problems, due to their nature of population-based search. Population update is a key component in multi-objective EAs (MOEAs), and it is performed in a greedy, deterministic manner. That is, the next-generation population is formed by selecting the first population-size ranked solutions (based on some selection criteria, e.g., non-dominated sorting, crowdedness and indicators) from the collections of the current population and newly-generated solutions. In this paper, we question this practice. We analytically present that introducing randomness into the population update procedure in MOEAs can be beneficial for the search. More specifically, we prove that the expected running time of a well-established MOEA (SMS-EMOA) for solving a commonly studied bi-objective problem, OneJumpZeroJump, can be exponentially decreased if replacing its deterministic population update mechanism by a stochastic one. Empirical studies also verify the effectiveness of the proposed stochastic population update method. This work is an attempt to challenge a common practice for the population update in MOEAs. Its positive results, which might hold more generally, should encourage the exploration of developing new MOEAs in the area.


Do Performance Aspirations Matter for Guiding Software Configuration Tuning?

arXiv.org Artificial Intelligence

Configurable software systems can be tuned for better performance. Leveraging on some Pareto optimizers, recent work has shifted from tuning for a single, time-related performance objective to two intrinsically different objectives that assess distinct performance aspects of the system, each with varying aspirations. Before we design better optimizers, a crucial engineering decision to make therein is how to handle the performance requirements with clear aspirations in the tuning process. For this, the community takes two alternative optimization models: either quantifying and incorporating the aspirations into the search objectives that guide the tuning, or not considering the aspirations during the search but purely using them in the later decision-making process only. However, despite being a crucial decision that determines how an optimizer can be designed and tailored, there is a rather limited understanding of which optimization model should be chosen under what particular circumstance, and why. In this paper, we seek to close this gap. Firstly, we do that through a review of over 426 papers in the literature and 14 real-world requirements datasets. Drawing on these, we then conduct a comprehensive empirical study that covers 15 combinations of the state-of-the-art performance requirement patterns, four types of aspiration space, three Pareto optimizers, and eight real-world systems/environments, leading to 1,296 cases of investigation. We found that (1) the realism of aspirations is the key factor that determines whether they should be used to guide the tuning; (2) the given patterns and the position of the realistic aspirations in the objective landscape are less important for the choice, but they do matter to the extents of improvement; (3) the available tuning budget can also influence the choice for unrealistic aspirations but it is insignificant under realistic ones.


The Weights can be Harmful: Pareto Search versus Weighted Search in Multi-Objective Search-Based Software Engineering

arXiv.org Artificial Intelligence

In presence of multiple objectives to be optimized in Search-Based Software Engineering (SBSE), Pareto search has been commonly adopted. It searches for a good approximation of the problem's Pareto optimal solutions, from which the stakeholders choose the most preferred solution according to their preferences. However, when clear preferences of the stakeholders (e.g., a set of weights which reflect relative importance between objectives) are available prior to the search, weighted search is believed to be the first choice since it simplifies the search via converting the original multi-objective problem into a single-objective one and enable the search to focus on what only the stakeholders are interested in. This paper questions such a "weighted search first" belief. We show that the weights can, in fact, be harmful to the search process even in the presence of clear preferences. Specifically, we conduct a large scale empirical study which consists of 38 systems/projects from three representative SBSE problems, together with two types of search budget and nine sets of weights, leading to 604 cases of comparisons. Our key finding is that weighted search reaches a certain level of solution quality by consuming relatively less resources at the early stage of the search; however, Pareto search is at the majority of the time (up to 77% of the cases) significantly better than its weighted counterpart, as long as we allow a sufficient, but not unrealistic search budget. This, together with other findings and actionable suggestions in the paper, allows us to codify pragmatic and comprehensive guidance on choosing weighted and Pareto search for SBSE under the circumstance that clear preferences are available. All code and data can be accessed at: https://github.com/ideas-labo/pareto-vs-weight-for-sbse.


MMO: Meta Multi-Objectivization for Software Configuration Tuning

arXiv.org Artificial Intelligence

Software configuration tuning is essential for optimizing a given performance objective (e.g., minimizing latency). Yet, due to the software's intrinsically complex configuration landscape and expensive measurement, there has been a rather mild success, particularly in preventing the search from being trapped in local optima. To address this issue, in this paper we take a different perspective. Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly through a new normalization method we show how to effectively use the MMO model without worrying about its weight -- the only yet highly sensitive parameter that can affect its effectiveness. Experiments on 22 cases from 11 real-world software systems/environments confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 82% cases while achieving up to 2.09x speedup. For 67% of the cases, the new normalization also enables the MMO model to outperform the instance when using it with the normalization used in our prior FSE work under pre-tuned best weights, saving a great amount of resources which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can consolidate Flash, a recent model-based tuning tool, on 68% of the cases with 1.22x speedup in general.


Multi-Objectivizing Software Configuration Tuning (for a single performance concern)

arXiv.org Artificial Intelligence

Automatically tuning software configuration for optimizing a single performance attribute (e.g., minimizing latency) is not trivial, due to the nature of the configuration systems (e.g., complex landscape and expensive measurement). To deal with the problem, existing work has been focusing on developing various effective optimizers. However, a prominent issue that all these optimizers need to take care of is how to avoid the search being trapped in local optima -- a hard nut to crack for software configuration tuning due to its rugged and sparse landscape, and neighboring configurations tending to behave very differently. Overcoming such in an expensive measurement setting is even more challenging. In this paper, we take a different perspective to tackle this issue. Instead of focusing on improving the optimizer, we work on the level of optimization model. We do this by proposing a meta multi-objectivization model (MMO) that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Experiments on eight real-world software systems/environments with diverse performance attributes reveal that our MMO model is statistically more effective than state-of-the-art single-objective counterparts in overcoming local optima (up to 42% gain), while using as low as 24% of their measurements to achieve the same (or better) performance result.