Goto

Collaborating Authors

 Li, Mingjia


Exploring Structured Semantic Priors Underlying Diffusion Score for Test-time Adaptation

arXiv.org Artificial Intelligence

Capitalizing on the complementary advantages of generative and discriminative models has always been a compelling vision in machine learning, backed by a growing body of research. This work discloses the hidden semantic structure within score-based generative models, unveiling their potential as effective discriminative priors. Inspired by our theoretical findings, we propose DUSA to exploit the structured semantic priors underlying diffusion score to facilitate the test-time adaptation of image classifiers or dense predictors. Notably, DUSA extracts knowledge from a single timestep of denoising diffusion, lifting the curse of Monte Carlo-based likelihood estimation over timesteps. We demonstrate the efficacy of our DUSA in adapting a wide variety of competitive pre-trained discriminative models on diverse test-time scenarios. Additionally, a thorough ablation study is conducted to dissect the pivotal elements in DUSA. Code is publicly available at https://github.com/BIT-DA/DUSA.


Evolutionary Reinforcement Learning via Cooperative Coevolutionary Negatively Correlated Search

arXiv.org Artificial Intelligence

Evolutionary algorithms (EAs) have been successfully applied to optimize the policies for Reinforcement Learning (RL) tasks due to their exploration ability. The recently proposed Negatively Correlated Search (NCS) provides a distinct parallel exploration search behavior and is expected to facilitate RL more effectively. Considering that the commonly adopted neural policies usually involves millions of parameters to be optimized, the direct application of NCS to RL may face a great challenge of the large-scale search space. To address this issue, this paper presents an NCS-friendly Cooperative Coevolution (CC) framework to scale-up NCS while largely preserving its parallel exploration search behavior. The issue of traditional CC that can deteriorate NCS is also discussed. Empirical studies on 10 popular Atari games show that the proposed method can significantly outperform three state-of-the-art deep RL methods with 50% less computational time by effectively exploring a 1.7 million-dimensional search space.