Not enough data to create a plot.
Try a different view from the menu above.
Li, Ming
Post-Incorporating Code Structural Knowledge into LLMs via In-Context Learning for Code Translation
Code translation migrates codebases across programming languages. Recently, large language models (LLMs) have achieved significant advancements in software mining. However, handling the syntactic structure of source code remains a challenge. Classic syntax-aware methods depend on intricate model architectures and loss functions, rendering their integration into LLM training resource-intensive. This paper employs in-context learning (ICL), which directly integrates task exemplars into the input context, to post-incorporate code structural knowledge into pre-trained LLMs. We revisit exemplar selection in ICL from an information-theoretic perspective, proposing that list-wise selection based on information coverage is more precise and general objective than traditional methods based on combining similarity and diversity. To address the challenges of quantifying information coverage, we introduce a surrogate measure, Coverage of Abstract Syntax Tree (CAST). Furthermore, we formulate the NP-hard CAST maximization for exemplar selection and prove that it is a standard submodular maximization problem. Therefore, we propose a greedy algorithm for CAST submodular maximization, which theoretically guarantees a (1-1/e)-approximate solution in polynomial time complexity. Our method is the first training-free and model-agnostic approach to post-incorporate code structural knowledge into existing LLMs at test time. Experimental results show that our method significantly improves LLMs performance and reveals two meaningful insights: 1) Code structural knowledge can be effectively post-incorporated into pre-trained LLMs during inference, despite being overlooked during training; 2) Scaling up model size or training data does not lead to the emergence of code structural knowledge, underscoring the necessity of explicitly considering code syntactic structure.
Synthetic-to-Real Self-supervised Robust Depth Estimation via Learning with Motion and Structure Priors
Yan, Weilong, Li, Ming, Li, Haipeng, Shao, Shuwei, Tan, Robby T.
Self-supervised depth estimation from monocular cameras in diverse outdoor conditions, such as daytime, rain, and nighttime, is challenging due to the difficulty of learning universal representations and the severe lack of labeled real-world adverse data. Previous methods either rely on synthetic inputs and pseudo-depth labels or directly apply daytime strategies to adverse conditions, resulting in suboptimal results. In this paper, we present the first synthetic-to-real robust depth estimation framework, incorporating motion and structure priors to capture real-world knowledge effectively. In the synthetic adaptation, we transfer motion-structure knowledge inside cost volumes for better robust representation, using a frozen daytime model to train a depth estimator in synthetic adverse conditions. In the innovative real adaptation, which targets to fix synthetic-real gaps, models trained earlier identify the weather-insensitive regions with a designed consistency-reweighting strategy to emphasize valid pseudo-labels. We introduce a new regularization by gathering explicit depth distributions to constrain the model when facing real-world data. Experiments show that our method outperforms the state-of-the-art across diverse conditions in multi-frame and single-frame evaluations. We achieve improvements of 7.5% and 4.3% in AbsRel and RMSE on average for nuScenes and Robotcar datasets (daytime, nighttime, rain). In zero-shot evaluation of DrivingStereo (rain, fog), our method generalizes better than the previous ones.
EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Qu, Qiang, Li, Ming, Chen, Xiaoming, Liu, Tongliang
Conditional human animation transforms a static reference image into a dynamic sequence by applying motion cues such as poses. These motion cues are typically derived from video data but are susceptible to limitations including low temporal resolution, motion blur, overexposure, and inaccuracies under low-light conditions. In contrast, event cameras provide data streams with exceptionally high temporal resolution, a wide dynamic range, and inherent resistance to motion blur and exposure issues. In this work, we propose EvAnimate, a framework that leverages event streams as motion cues to animate static human images. Our approach employs a specialized event representation that transforms asynchronous event streams into 3-channel slices with controllable slicing rates and appropriate slice density, ensuring compatibility with diffusion models. Subsequently, a dual-branch architecture generates high-quality videos by harnessing the inherent motion dynamics of the event streams, thereby enhancing both video quality and temporal consistency. Specialized data augmentation strategies further enhance cross-person generalization. Finally, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and extreme scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
Advanced Deep Learning Methods for Protein Structure Prediction and Design
Wang, Tianyang, Zhang, Yichao, Deng, Ningyuan, Song, Xinyuan, Bi, Ziqian, Yao, Zheyu, Chen, Keyu, Li, Ming, Niu, Qian, Liu, Junyu, Peng, Benji, Zhang, Sen, Liu, Ming, Zhang, Li, Pan, Xuanhe, Wang, Jinlang, Feng, Pohsun, Wen, Yizhu, Yan, Lawrence KQ, Tseng, Hongming, Zhong, Yan, Wang, Yunze, Qin, Ziyuan, Jing, Bowen, Yang, Junjie, Zhou, Jun, Liang, Chia Xin, Song, Junhao
After AlphaFold won the Nobel Prize, protein prediction with deep learning once again became a hot topic. We comprehensively explore advanced deep learning methods applied to protein structure prediction and design. It begins by examining recent innovations in prediction architectures, with detailed discussions on improvements such as diffusion based frameworks and novel pairwise attention modules. The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture, thereby illustrating the current state of the art in computational protein modelling. Subsequent chapters focus on practical applications, presenting case studies that range from individual protein predictions to complex biomolecular interactions. Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored. The later sections review the industry landscape of protein design, highlighting the transformative role of artificial intelligence in biotechnology and discussing emerging market trends and future challenges. Supplementary appendices provide essential resources such as databases and open source tools, making this volume a valuable reference for researchers and students.
PVChat: Personalized Video Chat with One-Shot Learning
Shi, Yufei, Yan, Weilong, Xu, Gang, Li, Yumeng, Li, Yuchen, Li, Zhenxi, Yu, Fei Richard, Li, Ming, Yeo, Si Yong
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
A Learnability Analysis on Neuro-Symbolic Learning
He, Hao-Yuan, Li, Ming
This paper analyzes the learnability of neuro-symbolic (NeSy) tasks within hybrid systems. We show that the learnability of NeSy tasks can be characterized by their derived constraint satisfaction problems (DCSPs). Specifically, a task is learnable if the corresponding DCSP has a unique solution; otherwise, it is unlearnable. For learnable tasks, we establish error bounds by exploiting the clustering property of the hypothesis space. Additionally, we analyze the asymptotic error for general NeSy tasks, showing that the expected error scales with the disagreement among solutions. Our results offer a principled approach to determining learnability and provide insights into the design of new algorithms.
Where do Large Vision-Language Models Look at when Answering Questions?
Xing, Xiaoying, Kuo, Chia-Wen, Fuxin, Li, Niu, Yulei, Chen, Fan, Li, Ming, Wu, Ying, Wen, Longyin, Zhu, Sijie
Large Vision-Language Models (LVLMs) have shown promising performance in vision-language understanding and reasoning tasks. However, their visual understanding behaviors remain underexplored. A fundamental question arises: to what extent do LVLMs rely on visual input, and which image regions contribute to their responses? It is non-trivial to interpret the free-form generation of LVLMs due to their complicated visual architecture (e.g., multiple encoders and multi-resolution) and variable-length outputs. In this paper, we extend existing heatmap visualization methods (e.g., iGOS++) to support LVLMs for open-ended visual question answering. We propose a method to select visually relevant tokens that reflect the relevance between generated answers and input image. Furthermore, we conduct a comprehensive analysis of state-of-the-art LVLMs on benchmarks designed to require visual information to answer. Our findings offer several insights into LVLM behavior, including the relationship between focus region and answer correctness, differences in visual attention across architectures, and the impact of LLM scale on visual understanding. The code and data are available at https://github.com/bytedance/LVLM_Interpretation.
Convergence Dynamics and Stabilization Strategies of Co-Evolving Generative Models
Gao, Weiguo, Li, Ming
The increasing prevalence of synthetic data in training loops has raised concerns about model collapse, where generative models degrade when trained on their own outputs. While prior work focuses on this self-consuming process, we study an underexplored yet prevalent phenomenon: co-evolving generative models that shape each other's training through iterative feedback. This is common in multimodal AI ecosystems, such as social media platforms, where text models generate captions that guide image models, and the resulting images influence the future adaptation of the text model. We take a first step by analyzing such a system, modeling the text model as a multinomial distribution and the image model as a conditional multi-dimensional Gaussian distribution. Our analysis uncovers three key results. First, when one model remains fixed, the other collapses: a frozen image model causes the text model to lose diversity, while a frozen text model leads to an exponential contraction of image diversity, though fidelity remains bounded. Second, in fully interactive systems, mutual reinforcement accelerates collapse, with image contraction amplifying text homogenization and vice versa, leading to a Matthew effect where dominant texts sustain higher image diversity while rarer texts collapse faster. Third, we analyze stabilization strategies implicitly introduced by real-world external influences. Random corpus injections for text models and user-content injections for image models prevent collapse while preserving both diversity and fidelity. Our theoretical findings are further validated through experiments.
Uni$\textbf{F}^2$ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Li, Junzhe, Qiu, Xuerui, Xu, Linrui, Guo, Liya, Qu, Delin, Long, Tingting, Fan, Chun, Li, Ming
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on $\textbf{coarse}$ facial attribute understanding, with limited capacity to handle $\textbf{fine-grained}$ facial attributes and without addressing generation capabilities. To overcome these limitations, we propose Uni$\textbf{F}^2$ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train Uni$\textbf{F}^2$ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, Uni$\textbf{F}^2$ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on Uni$\textbf{F}^2$ace-130K demonstrate that Uni$\textbf{F}^2$ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
ProJudge: A Multi-Modal Multi-Discipline Benchmark and Instruction-Tuning Dataset for MLLM-based Process Judges
Ai, Jiaxin, Zhou, Pengfei, Xu, Zhaopan, Li, Ming, Zhang, Fanrui, Li, Zizhen, Sun, Jianwen, Feng, Yukang, Huang, Baojin, Wang, Zhongyuan, Zhang, Kaipeng
As multi-modal large language models (MLLMs) frequently exhibit errors when solving scientific problems, evaluating the validity of their reasoning processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is laborious and costly, prompting MLLMs as automated process judges has become a common practice. However, the reliability of these model-based judges remains uncertain. To address this, we introduce ProJudgeBench, the first comprehensive benchmark specifically designed for evaluating abilities of MLLM-based process judges. ProJudgeBench comprises 2,400 test cases and 50,118 step-level labels, spanning four scientific disciplines with diverse difficulty levels and multi-modal content. In ProJudgeBench, each step is meticulously annotated by human experts for correctness, error type, and explanation, enabling a systematic evaluation of judges' capabilities to detect, classify and diagnose errors. Evaluation on ProJudgeBench reveals a significant performance gap between open-source and proprietary models. To bridge this gap, we further propose ProJudge-173k, a large-scale instruction-tuning dataset, and a Dynamic Dual-Phase fine-tuning strategy that encourages models to explicitly reason through problem-solving before assessing solutions. Both contributions significantly enhance the process evaluation capabilities of open-source models. All the resources will be released to foster future research of reliable multi-modal process evaluation.