Goto

Collaborating Authors

 Li, Mengtian


Hierarchical Fashion Design with Multi-stage Diffusion Models

arXiv.org Artificial Intelligence

Cross-modal fashion synthesis and editing offer intelligent support to fashion designers by enabling the automatic generation and local modification of design drafts.While current diffusion models demonstrate commendable stability and controllability in image synthesis,they still face significant challenges in generating fashion design from abstract design elements and fine-grained editing.Abstract sensory expressions, \eg office, business, and party, form the high-level design concepts, while measurable aspects like sleeve length, collar type, and pant length are considered the low-level attributes of clothing.Controlling and editing fashion images using lengthy text descriptions poses a difficulty.In this paper, we propose HieraFashDiff,a novel fashion design method using the shared multi-stage diffusion model encompassing high-level design concepts and low-level clothing attributes in a hierarchical structure.Specifically, we categorized the input text into different levels and fed them in different time step to the diffusion model according to the criteria of professional clothing designers.HieraFashDiff allows designers to add low-level attributes after high-level prompts for interactive editing incrementally.In addition, we design a differentiable loss function in the sampling process with a mask to keep non-edit areas.Comprehensive experiments performed on our newly conducted Hierarchical fashion dataset,demonstrate that our proposed method outperforms other state-of-the-art competitors.


Learning Lightweight Object Detectors via Multi-Teacher Progressive Distillation

arXiv.org Artificial Intelligence

Resource-constrained perception systems such as edge computing and vision-for-robotics require vision models to be both accurate and lightweight in computation and memory usage. While knowledge distillation is a proven strategy to enhance the performance of lightweight classification models, its application to structured outputs like object detection and instance segmentation remains a complicated task, due to the variability in outputs and complex internal network modules involved in the distillation process. In this paper, we propose a simple yet surprisingly effective sequential approach to knowledge distillation that progressively transfers the knowledge of a set of teacher detectors to a given lightweight student. To distill knowledge from a highly accurate but complex teacher model, we construct a sequence of teachers to help the student gradually adapt. Our progressive strategy can be easily combined with existing detection distillation mechanisms to consistently maximize student performance in various settings. To the best of our knowledge, we are the first to successfully distill knowledge from Transformer-based teacher detectors to convolution-based students, and unprecedentedly boost the performance of ResNet-50 based RetinaNet from 36.5% to 42.0% AP and Mask R-CNN from 38.2% to 42.5% AP on the MS COCO benchmark.


An Empirical Analysis of Range for 3D Object Detection

arXiv.org Artificial Intelligence

LiDAR-based 3D detection plays a vital role in autonomous navigation. Surprisingly, although autonomous vehicles (AVs) must detect both near-field objects (for collision avoidance) and far-field objects (for longer-term planning), contemporary benchmarks focus only on near-field 3D detection. However, AVs must detect far-field objects for safe navigation. In this paper, we present an empirical analysis of far-field 3D detection using the long-range detection dataset Argoverse 2.0 to better understand the problem, and share the following insight: near-field LiDAR measurements are dense and optimally encoded by small voxels, while far-field measurements are sparse and are better encoded with large voxels. We exploit this observation to build a collection of range experts tuned for near-vs-far field detection, and propose simple techniques to efficiently ensemble models for long-range detection that improve efficiency by 33% and boost accuracy by 3.2% CDS.


Far3Det: Towards Far-Field 3D Detection

arXiv.org Artificial Intelligence

We focus on the task of far-field 3D detection (Far3Det) of objects beyond a certain distance from an observer, e.g., $>$50m. Far3Det is particularly important for autonomous vehicles (AVs) operating at highway speeds, which require detections of far-field obstacles to ensure sufficient braking distances. However, contemporary AV benchmarks such as nuScenes underemphasize this problem because they evaluate performance only up to a certain distance (50m). One reason is that obtaining far-field 3D annotations is difficult, particularly for lidar sensors that produce very few point returns for far-away objects. Indeed, we find that almost 50% of far-field objects (beyond 50m) contain zero lidar points. Secondly, current metrics for 3D detection employ a "one-size-fits-all" philosophy, using the same tolerance thresholds for near and far objects, inconsistent with tolerances for both human vision and stereo disparities. Both factors lead to an incomplete analysis of the Far3Det task. For example, while conventional wisdom tells us that high-resolution RGB sensors should be vital for 3D detection of far-away objects, lidar-based methods still rank higher compared to RGB counterparts on the current benchmark leaderboards. As a first step towards a Far3Det benchmark, we develop a method to find well-annotated scenes from the nuScenes dataset and derive a well-annotated far-field validation set. We also propose a Far3Det evaluation protocol and explore various 3D detection methods for Far3Det. Our result convincingly justifies the long-held conventional wisdom that high-resolution RGB improves 3D detection in the far-field. We further propose a simple yet effective method that fuses detections from RGB and lidar detectors based on non-maximum suppression, which remarkably outperforms state-of-the-art 3D detectors in the far-field.


Brute-Force Facial Landmark Analysis With a 140,000-Way Classifier

AAAI Conferences

We propose a simple approach to visual alignment, focusing on the illustrative task of facial landmark estimation. While most prior work treats this as a regression problem, we instead formulate it as a discrete K-way classification task, where a classifier is trained to return one of K discrete alignments. One crucial benefit of a classifier is the ability to report back a (softmax) distribution over putative alignments. We demonstrate that this distribution is a rich representation that can be marginalized (to generate uncertainty estimates over groups of landmarks) and conditioned on (to incorporate top-down context, provided by temporal constraints in a video stream or an interactive human user). Such capabilities are difficult to integrate into classic regression-based approaches. We study performance as a function of the number of classes K, including the extreme "exemplar class" setting where K is equal to the number of training examples (140K in our setting). Perhaps surprisingly, we show that classifiers can still be learned in this setting. When compared to prior work in classification, our K is unprecedentedly large, including many "fine-grained" classes that are very similar. We address these issues by using a multi-label loss function that allows for training examples to be non-uniformly shared across discrete classes. We perform a comprehensive experimental analysis of our method on standard benchmarks, demonstrating state-of-the-art results for facial alignment in videos.