Goto

Collaborating Authors

 Li, Lujun


Delta Decompression for MoE-based LLMs Compression

arXiv.org Artificial Intelligence

Mixture-of-Experts (MoE) architectures in large language models (LLMs) achieve exceptional performance, but face prohibitive storage and memory requirements. To address these challenges, we present $D^2$-MoE, a new delta decompression compressor for reducing the parameters of MoE LLMs. Based on observations of expert diversity, we decompose their weights into a shared base weight and unique delta weights. Specifically, our method first merges each expert's weight into the base weight using the Fisher information matrix to capture shared components. Then, we compress delta weights through Singular Value Decomposition (SVD) by exploiting their low-rank properties. Finally, we introduce a semi-dynamical structured pruning strategy for the base weights, combining static and dynamic redundancy analysis to achieve further parameter reduction while maintaining input adaptivity. In this way, our $D^2$-MoE successfully compact MoE LLMs to high compression ratios without additional training. Extensive experiments highlight the superiority of our approach, with over 13% performance gains than other compressors on Mixtral|Phi-3.5|DeepSeek|Qwen2 MoE LLMs at 40$\sim$60% compression rates. Codes are available in https://github.com/lliai/D2MoE.


You Know What I'm Saying: Jailbreak Attack via Implicit Reference

arXiv.org Artificial Intelligence

While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.


LPZero: Language Model Zero-cost Proxy Search from Zero

arXiv.org Artificial Intelligence

In spite of the outstanding performance, Neural Architecture Search (NAS) is criticized for massive computation. Recently, Zero-shot NAS has emerged as a promising approach by exploiting Zero-cost (ZC) proxies, which markedly reduce computational demands. Despite this, existing ZC proxies heavily rely on expert knowledge and incur significant trial-and-error costs. Particularly in NLP tasks, most existing ZC proxies fail to surpass the performance of the naive baseline. To address these challenges, we introduce a novel framework, \textbf{LPZero}, which is the first to automatically design ZC proxies for various tasks, achieving higher ranking consistency than human-designed proxies. Specifically, we model the ZC proxy as a symbolic equation and incorporate a unified proxy search space that encompasses existing ZC proxies, which are composed of a predefined set of mathematical symbols. To heuristically search for the best ZC proxy, LPZero incorporates genetic programming to find the optimal symbolic composition. We propose a \textit{Rule-based Pruning Strategy (RPS),} which preemptively eliminates unpromising proxies, thereby mitigating the risk of proxy degradation. Extensive experiments on FlexiBERT, GPT-2, and LLaMA-7B demonstrate LPZero's superior ranking ability and performance on downstream tasks compared to current approaches.


Pruner-Zero: Evolving Symbolic Pruning Metric from scratch for Large Language Models

arXiv.org Artificial Intelligence

Despite the remarkable capabilities, Large Language Models (LLMs) face deployment challenges due to their extensive size. Pruning methods drop a subset of weights to accelerate, but many of them require retraining, which is prohibitively expensive and computationally demanding. Recently, post-training pruning approaches introduced novel metrics, enabling the pruning of LLMs without retraining. However, these metrics require the involvement of human experts and tedious trial and error. To efficiently identify superior pruning metrics, we develop an automatic framework for searching symbolic pruning metrics using genetic programming. In particular, we devise an elaborate search space encompassing the existing pruning metrics to discover the potential symbolic pruning metric. We propose an opposing operation simplification strategy to increase the diversity of the population. In this way, Pruner-Zero allows auto-generation of symbolic pruning metrics. Based on the searched results, we explore the correlation between pruning metrics and performance after pruning and summarize some principles. Extensive experiments on LLaMA and LLaMA-2 on language modeling and zero-shot tasks demonstrate that our Pruner-Zero obtains superior performance than SOTA post-training pruning methods. Code at: \url{https://github.com/pprp/Pruner-Zero}.


EMQ: Evolving Training-free Proxies for Automated Mixed Precision Quantization

arXiv.org Artificial Intelligence

Mixed-Precision Quantization~(MQ) can achieve a competitive accuracy-complexity trade-off for models. Conventional training-based search methods require time-consuming candidate training to search optimized per-layer bit-width configurations in MQ. Recently, some training-free approaches have presented various MQ proxies and significantly improve search efficiency. However, the correlation between these proxies and quantization accuracy is poorly understood. To address the gap, we first build the MQ-Bench-101, which involves different bit configurations and quantization results. Then, we observe that the existing training-free proxies perform weak correlations on the MQ-Bench-101. To efficiently seek superior proxies, we develop an automatic search of proxies framework for MQ via evolving algorithms. In particular, we devise an elaborate search space involving the existing proxies and perform an evolution search to discover the best correlated MQ proxy. We proposed a diversity-prompting selection strategy and compatibility screening protocol to avoid premature convergence and improve search efficiency. In this way, our Evolving proxies for Mixed-precision Quantization~(EMQ) framework allows the auto-generation of proxies without heavy tuning and expert knowledge. Extensive experiments on ImageNet with various ResNet and MobileNet families demonstrate that our EMQ obtains superior performance than state-of-the-art mixed-precision methods at a significantly reduced cost. The code will be released.


Catch-Up Distillation: You Only Need to Train Once for Accelerating Sampling

arXiv.org Artificial Intelligence

Diffusion Probability Models (DPMs) have made impressive advancements in various machine learning domains. However, achieving high-quality synthetic samples typically involves performing a large number of sampling steps, which impedes the possibility of real-time sample synthesis. Traditional accelerated sampling algorithms via knowledge distillation rely on pre-trained model weights and discrete time step scenarios, necessitating additional training sessions to achieve their goals. To address these issues, we propose the Catch-Up Distillation (CUD), which encourages the current moment output of the velocity estimation model ``catch up'' with its previous moment output. Specifically, CUD adjusts the original Ordinary Differential Equation (ODE) training objective to align the current moment output with both the ground truth label and the previous moment output, utilizing Runge-Kutta-based multi-step alignment distillation for precise ODE estimation while preventing asynchronous updates. Furthermore, we investigate the design space for CUDs under continuous time-step scenarios and analyze how to determine the suitable strategies. To demonstrate CUD's effectiveness, we conduct thorough ablation and comparison experiments on CIFAR-10, MNIST, and ImageNet-64. On CIFAR-10, we obtain a FID of 2.80 by sampling in 15 steps under one-session training and the new state-of-the-art FID of 3.37 by sampling in one step with additional training. This latter result necessitated only 620k iterations with a batch size of 128, in contrast to Consistency Distillation, which demanded 2100k iterations with a larger batch size of 256. Our code is released at https://anonymous.4open.science/r/Catch-Up-Distillation-E31F.


NORM: Knowledge Distillation via N-to-One Representation Matching

arXiv.org Artificial Intelligence

Existing feature distillation methods commonly adopt the One-to-one Representation Matching between any pre-selected teacher-student layer pair. In this paper, we present N-to-One Representation (NORM), a new two-stage knowledge distillation method, which relies on a simple Feature Transform (FT) module consisting of two linear layers. In view of preserving the intact information learnt by the teacher network, during training, our FT module is merely inserted after the last convolutional layer of the student network. The first linear layer projects the student representation to a feature space having N times feature channels than the teacher representation from the last convolutional layer, and the second linear layer contracts the expanded output back to the original feature space. By sequentially splitting the expanded student representation into N non-overlapping feature segments having the same number of feature channels as the teacher's, they can be readily forced to approximate the intact teacher representation simultaneously, formulating a novel many-to-one representation matching mechanism conditioned on a single teacher-student layer pair. After training, such an FT module will be naturally merged into the subsequent fully connected layer thanks to its linear property, introducing no extra parameters or architectural modifications to the student network at inference. Extensive experiments on different visual recognition benchmarks demonstrate the leading performance of our method. For instance, the ResNet18|MobileNet|ResNet50-1/4 model trained by NORM reaches 72.14%|74.26%|68.03% top-1 accuracy on the ImageNet dataset when using a pre-trained ResNet34|ResNet50|ResNet50 model as the teacher, achieving an absolute improvement of 2.01%|4.63%|3.03% against the individually trained counterpart. Code is available at https://github.com/OSVAI/NORM


DisWOT: Student Architecture Search for Distillation WithOut Training

arXiv.org Artificial Intelligence

Knowledge distillation (KD) is an effective training strategy to improve the lightweight student models under the guidance of cumbersome teachers. However, the large architecture difference across the teacher-student pairs limits the distillation gains. In contrast to previous adaptive distillation methods to reduce the teacher-student gap, we explore a novel training-free framework to search for the best student architectures for a given teacher. Our work first empirically show that the optimal model under vanilla training cannot be the winner in distillation. Secondly, we find that the similarity of feature semantics and sample relations between random-initialized teacher-student networks have good correlations with final distillation performances. Thus, we efficiently measure similarity matrixs conditioned on the semantic activation maps to select the optimal student via an evolutionary algorithm without any training. In this way, our student architecture search for Distillation WithOut Training (DisWOT) significantly improves the performance of the model in the distillation stage with at least 180$\times$ training acceleration. Additionally, we extend similarity metrics in DisWOT as new distillers and KD-based zero-proxies. Our experiments on CIFAR, ImageNet and NAS-Bench-201 demonstrate that our technique achieves state-of-the-art results on different search spaces. Our project and code are available at https://lilujunai.github.io/DisWOT-CVPR2023/.


GP-NAS-ensemble: a model for NAS Performance Prediction

arXiv.org Artificial Intelligence

It is of great significance to estimate the performance of a given model architecture without training in the application of Neural Architecture Search (NAS) as it may take a lot of time to evaluate the performance of an architecture. In this paper, a novel NAS framework called GP-NAS-ensemble is proposed to predict the performance of a neural network architecture with a small training dataset. We make several improvements on the GP-NAS model to make it share the advantage of ensemble learning methods. Our method ranks second in the CVPR2022 second lightweight NAS challenge performance prediction track.


Multi-trial Neural Architecture Search with Lottery Tickets

arXiv.org Artificial Intelligence

Neural architecture search (NAS) has brought significant progress in recent image recognition tasks. Most existing NAS methods apply restricted search spaces, which limits the upper-bound performance of searched models. To address this issue, we propose a new search space named MobileNet3-MT. By reducing human-prior knowledge in omni dimensions of networks, MobileNet3-MT accommodates more potential candidates. For searching in this challenging search space, we present an efficient Multi-trial Evolution-based NAS method termed MENAS. Specifically, we accelerate the evolutionary search process by gradually pruning models in the population. Each model is trained with an early stop and replaced by its Lottery Tickets (the explored optimal pruned network).In this way, the full training pipeline of cumbersome networks is prevented and more efficient networks are automatically generated. Extensive experimental results on ImageNet-1K, CIFAR-10, and CIFAR-100 demonstrate that MENAS achieves state-of-the-art performance.