Goto

Collaborating Authors

 Li, Leida


Diffusion Model Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment

arXiv.org Artificial Intelligence

Existing free-energy guided No-Reference Image Quality Assessment (NR-IQA) methods still suffer from finding a balance between learning feature information at the pixel level of the image and capturing high-level feature information and the efficient utilization of the obtained high-level feature information remains a challenge. As a novel class of state-of-the-art (SOTA) generative model, the diffusion model exhibits the capability to model intricate relationships, enabling a comprehensive understanding of images and possessing a better learning of both high-level and low-level visual features. In view of these, we pioneer the exploration of the diffusion model into the domain of NR-IQA. Firstly, we devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images, incorporating nonlinear features obtained during the denoising process of the diffusion model, as high-level visual information. Secondly, two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information. These include the visual compensation guidance branch, grounded in the transformer architecture and noise embedding strategy, and the visual difference analysis branch, built on the ResNet architecture and the residual transposed attention block. Extensive experiments are conducted on seven public NR-IQA datasets, and the results demonstrate that the proposed model outperforms SOTA methods for NR-IQA.


AesBench: An Expert Benchmark for Multimodal Large Language Models on Image Aesthetics Perception

arXiv.org Artificial Intelligence

With collective endeavors, multimodal large language models (MLLMs) are undergoing a flourishing development. However, their performances on image aesthetics perception remain indeterminate, which is highly desired in real-world applications. An obvious obstacle lies in the absence of a specific benchmark to evaluate the effectiveness of MLLMs on aesthetic perception. This blind groping may impede the further development of more advanced MLLMs with aesthetic perception capacity. To address this dilemma, we propose AesBench, an expert benchmark aiming to comprehensively evaluate the aesthetic perception capacities of MLLMs through elaborate design across dual facets. (1) We construct an Expert-labeled Aesthetics Perception Database (EAPD), which features diversified image contents and high-quality annotations provided by professional aesthetic experts. (2) We propose a set of integrative criteria to measure the aesthetic perception abilities of MLLMs from four perspectives, including Perception (AesP), Empathy (AesE), Assessment (AesA) and Interpretation (AesI). Extensive experimental results underscore that the current MLLMs only possess rudimentary aesthetic perception ability, and there is still a significant gap between MLLMs and humans. We hope this work can inspire the community to engage in deeper explorations on the aesthetic potentials of MLLMs. Source data will be available at https://github.com/yipoh/AesBench.


SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network

arXiv.org Artificial Intelligence

Visual Emotion Analysis (VEA) aims at finding out how people feel emotionally towards different visual stimuli, which has attracted great attention recently with the prevalence of sharing images on social networks. Since human emotion involves a highly complex and abstract cognitive process, it is difficult to infer visual emotions directly from holistic or regional features in affective images. It has been demonstrated in psychology that visual emotions are evoked by the interactions between objects as well as the interactions between objects and scenes within an image. Inspired by this, we propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images. To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features. Then, we conduct reasoning on the Emotion Graph using Graph Convolutional Network (GCN), yielding emotion-enhanced object features. We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism. Extensive experiments and comparisons are conducted on eight public visual emotion datasets, and the results demonstrate that the proposed SOLVER consistently outperforms the state-of-the-art methods by a large margin. Ablation studies verify the effectiveness of our method and visualizations prove its interpretability, which also bring new insight to explore the mysteries in VEA. Notably, we further discuss SOLVER on three other potential datasets with extended experiments, where we validate the robustness of our method and notice some limitations of it.


PDANet: Polarity-consistent Deep Attention Network for Fine-grained Visual Emotion Regression

arXiv.org Artificial Intelligence

Existing methods on visual emotion analysis mainly focus on coarse-grained emotion classification, i.e. assigning an image with a dominant discrete emotion category. However, these methods cannot well reflect the complexity and subtlety of emotions. In this paper, we study the fine-grained regression problem of visual emotions based on convolutional neural networks (CNNs). Specifically, we develop a Polarity-consistent Deep Attention Network (PDANet), a novel network architecture that integrates attention into a CNN with an emotion polarity constraint. First, we propose to incorporate both spatial and channel-wise attentions into a CNN for visual emotion regression, which jointly considers the local spatial connectivity patterns along each channel and the interdependency between different channels. Second, we design a novel regression loss, i.e. polarity-consistent regression (PCR) loss, based on the weakly supervised emotion polarity to guide the attention generation. By optimizing the PCR loss, PDANet can generate a polarity preserved attention map and thus improve the emotion regression performance. Extensive experiments are conducted on the IAPS, NAPS, and EMOTIC datasets, and the results demonstrate that the proposed PDANet outperforms the state-of-the-art approaches by a large margin for fine-grained visual emotion regression. Our source code is released at: https://github.com/ZizhouJia/PDANet.