Goto

Collaborating Authors

 Li, Junyou


Playable Game Generation

arXiv.org Artificial Intelligence

In recent years, Artificial Intelligence Generated Content (AIGC) has advanced from textto-image generation to text-to-video and multimodal video synthesis. However, generating playable games presents significant challenges due to the stringent requirements for realtime interaction, high visual quality, and accurate simulation of game mechanics. Existing approaches often fall short, either lacking real-time capabilities or failing to accurately simulate interactive mechanics. To tackle the playability issue, we propose a novel method called PlayGen, which encompasses game data generation, an autoregressive DiT-based diffusion model, and a comprehensive playability-based evaluation framework. Validated on well-known 2D and 3D games, PlayGen achieves real-time interaction, ensures sufficient visual quality, and provides accurate interactive mechanics simulation. Notably, these results are sustained even after over 1000 frames of gameplay on an NVIDIA RTX 2060 GPU. Our code is publicly available: here. Our playable demo generated by AI is: here.


Improving Sample Efficiency of Reinforcement Learning with Background Knowledge from Large Language Models

arXiv.org Artificial Intelligence

Low sample efficiency is an enduring challenge of reinforcement learning (RL). With the advent of versatile large language models (LLMs), recent works impart common-sense knowledge to accelerate policy learning for RL processes. However, we note that such guidance is often tailored for one specific task but loses generalizability. In this paper, we introduce a framework that harnesses LLMs to extract background knowledge of an environment, which contains general understandings of the entire environment, making various downstream RL tasks benefit from one-time knowledge representation. We ground LLMs by feeding a few pre-collected experiences and requesting them to delineate background knowledge of the environment. Afterward, we represent the output knowledge as potential functions for potential-based reward shaping, which has a good property for maintaining policy optimality from task rewards. We instantiate three variants to prompt LLMs for background knowledge, including writing code, annotating preferences, and assigning goals. Our experiments show that these methods achieve significant sample efficiency improvements in a spectrum of downstream tasks from Minigrid and Crafter domains.


An Autonomous Large Language Model Agent for Chemical Literature Data Mining

arXiv.org Artificial Intelligence

Chemical synthesis, which is crucial for advancing material synthesis and drug discovery, impacts various sectors including environmental science and healthcare. The rise of technology in chemistry has generated extensive chemical data, challenging researchers to discern patterns and refine synthesis processes. Artificial intelligence (AI) helps by analyzing data to optimize synthesis and increase yields. However, AI faces challenges in processing literature data due to the unstructured format and diverse writing style of chemical literature. To overcome these difficulties, we introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature. This AI agent employs large language models (LLMs) for prompt generation and iterative optimization. It functions as a chemistry assistant, automating data collection and analysis, thereby saving manpower and enhancing performance. Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data, and we compared our method with human experts in terms of content correctness and time efficiency. The proposed approach marks a significant advancement in automating chemical literature extraction and demonstrates the potential for AI to revolutionize data management and utilization in chemistry.


Affordable Generative Agents

arXiv.org Artificial Intelligence

The emergence of large language models (LLMs) has significantly advanced the simulation of believable interactive agents. However, the substantial cost on maintaining the prolonged agent interactions poses challenge over the deployment of believable LLM-based agents. Therefore, in this paper, we develop Affordable Generative Agents (AGA), a framework for enabling the generation of believable and low-cost interactions on both agent-environment and inter-agents levels. Specifically, for agent-environment interactions, we substitute repetitive LLM inferences with learned policies; while for inter-agent interactions, we model the social relationships between agents and compress auxiliary dialogue information. Extensive experiments on multiple environments show the effectiveness and efficiency of our proposed framework. Also, we delve into the mechanisms of emergent believable behaviors lying in LLM agents, demonstrating that agents can only generate finite behaviors in fixed environments, based upon which, we understand ways to facilitate emergent interaction behaviors. Our code is publicly available at: \url{https://github.com/AffordableGenerativeAgents/Affordable-Generative-Agents}.


More Agents Is All You Need

arXiv.org Artificial Intelligence

We find that, simply via a sampling-and-voting method, the performance of large language models (LLMs) scales with the number of agents instantiated. Also, this method is orthogonal to existing complicated methods to further enhance LLMs, while the degree of enhancement is correlated to the task difficulty. We conduct comprehensive experiments on a wide range of LLM benchmarks to verify the presence of our finding, and to study the properties that can facilitate its occurrence. Our code is publicly available at: Git.


Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis

arXiv.org Artificial Intelligence

Recent AI research plots a promising future of automatic chemical reactions within the chemistry society. This study proposes Chemist-X, a transformative AI agent that automates the reaction condition recommendation (RCR) task in chemical synthesis with retrieval-augmented generation (RAG) technology. To emulate expert chemists' strategies when solving RCR tasks, Chemist-X utilizes advanced RAG schemes to interrogate online molecular databases and distill critical data from the latest literature database. Further, the agent leverages state-of-the-art computer-aided design (CAD) tools with a large language model (LLM) supervised programming interface. With the ability to utilize updated chemical knowledge and CAD tools, our agent significantly outperforms conventional synthesis AIs confined to the fixed knowledge within its training data. Chemist-X considerably reduces chemists' workload and allows them to focus on more fundamental and creative problems, thereby bringing closer computational techniques and chemical research and making a remarkable leap toward harnessing AI's full capabilities in scientific discovery.


Revisiting Discrete Soft Actor-Critic

arXiv.org Artificial Intelligence

We study the adaption of soft actor-critic (SAC) from continuous action space to discrete action space. We revisit vanilla SAC and provide an in-depth understanding of its Q value underestimation and performance instability issues when applied to discrete settings. We thereby propose entropy-penalty and double average Q-learning with Q-clip to address these issues. Extensive experiments on typical benchmarks with discrete action space, including Atari games and a large-scale MOBA game, show the efficacy of our proposed method.


Pretraining in Deep Reinforcement Learning: A Survey

arXiv.org Artificial Intelligence

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.


JueWu-MC: Playing Minecraft with Sample-efficient Hierarchical Reinforcement Learning

arXiv.org Artificial Intelligence

Learning rational behaviors in open-world games like Minecraft remains to be challenging for Reinforcement Learning (RL) research due to the compound challenge of partial observability, high-dimensional visual perception and delayed reward. To address this, we propose JueWu-MC, a sample-efficient hierarchical RL approach equipped with representation learning and imitation learning to deal with perception and exploration. Specifically, our approach includes two levels of hierarchy, where the high-level controller learns a policy to control over options and the low-level workers learn to solve each sub-task. To boost the learning of sub-tasks, we propose a combination of techniques including 1) action-aware representation learning which captures underlying relations between action and representation, 2) discriminator-based self-imitation learning for efficient exploration, and 3) ensemble behavior cloning with consistency filtering for policy robustness. Extensive experiments show that JueWu-MC significantly improves sample efficiency and outperforms a set of baselines by a large margin. Notably, we won the championship of the NeurIPS MineRL 2021 research competition and achieved the highest performance score ever.