Goto

Collaborating Authors

 Li, Juanhui


Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data

arXiv.org Artificial Intelligence

In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets. However, the large size and high computation demands of LLMs limit their practicality in many applications, especially when further fine-tuning is required. To address these limitations, smaller models are typically preferred for deployment. However, their training is hindered by the scarcity of labeled data. In contrast, unlabeled data is often readily which can be leveraged by using LLMs to generate pseudo-labels for training smaller models. This enables the smaller models (student) to acquire knowledge from LLMs(teacher) while reducing computational costs. This process introduces challenges, such as potential noisy pseudo-labels. Selecting high-quality and informative data is therefore critical to enhance model performance while improving the efficiency of data utilization. To address this, we propose LLKD that enables Learning with Less computational resources and less data for Knowledge Distillation from LLMs. LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student. Specifically, it prioritizes samples where the teacher demonstrates high confidence in its labeling, indicating reliable labels, and where the student exhibits a high information need, identifying challenging samples that require further learning. Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.


Node-wise Filtering in Graph Neural Networks: A Mixture of Experts Approach

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have proven to be highly effective for node classification tasks across diverse graph structural patterns. Traditionally, GNNs employ a uniform global filter, typically a low-pass filter for homophilic graphs and a high-pass filter for heterophilic graphs. However, real-world graphs often exhibit a complex mix of homophilic and heterophilic patterns, rendering a single global filter approach suboptimal. In this work, we theoretically demonstrate that a global filter optimized for one pattern can adversely affect performance on nodes with differing patterns. To address this, we introduce a novel GNN framework Node-MoE that utilizes a mixture of experts to adaptively select the appropriate filters for different nodes. Extensive experiments demonstrate the effectiveness of Node-MoE on both homophilic and heterophilic graphs.


Mixture of Link Predictors

arXiv.org Artificial Intelligence

Link prediction, which aims to forecast unseen connections in graphs, is a fundamental task in graph machine learning. Heuristic methods, leveraging a range of different pairwise measures such as common neighbors and shortest paths, often rival the performance of vanilla Graph Neural Networks (GNNs). Therefore, recent advancements in GNNs for link prediction (GNN4LP) have primarily focused on integrating one or a few types of pairwise information. In this work, we reveal that different node pairs within the same dataset necessitate varied pairwise information for accurate prediction and models that only apply the same pairwise information uniformly could achieve suboptimal performance. As a result, we propose a simple mixture of experts model Link-MoE for link prediction. Link-MoE utilizes various GNNs as experts and strategically selects the appropriate expert for each node pair based on various types of pairwise information. Experimental results across diverse real-world datasets demonstrate substantial performance improvement from Link-MoE. Notably, Link-MoE achieves a relative improvement of 18.82\% on the MRR metric for the Pubmed dataset and 10.8\% on the Hits@100 metric for the ogbl-ppa dataset, compared to the best baselines.


Enhancing ID and Text Fusion via Alternative Training in Session-based Recommendation

arXiv.org Artificial Intelligence

Session-based recommendation has gained increasing attention in recent years, with its aim to offer tailored suggestions based on users' historical behaviors within sessions. To advance this field, a variety of methods have been developed, with ID-based approaches typically demonstrating promising performance. However, these methods often face challenges with long-tail items and overlook other rich forms of information, notably valuable textual semantic information. To integrate text information, various methods have been introduced, mostly following a naive fusion framework. Surprisingly, we observe that fusing these two modalities does not consistently outperform the best single modality by following the naive fusion framework. Further investigation reveals an potential imbalance issue in naive fusion, where the ID dominates and text modality is undertrained. This suggests that the unexpected observation may stem from naive fusion's failure to effectively balance the two modalities, often over-relying on the stronger ID modality. This insight suggests that naive fusion might not be as effective in combining ID and text as previously expected. To address this, we propose a novel alternative training strategy AlterRec. It separates the training of ID and text, thereby avoiding the imbalance issue seen in naive fusion. Additionally, AlterRec designs a novel strategy to facilitate the interaction between the two modalities, enabling them to mutually learn from each other and integrate the text more effectively. Comprehensive experiments demonstrate the effectiveness of AlterRec in session-based recommendation. The implementation is available at https://github.com/Juanhui28/AlterRec.


Revisiting Link Prediction: A Data Perspective

arXiv.org Artificial Intelligence

Link prediction, a fundamental task on graphs, has proven indispensable in various applications, e.g., friend recommendation, protein analysis, and drug interaction prediction. However, since datasets span a multitude of domains, they could have distinct underlying mechanisms of link formation. Evidence in existing literature underscores the absence of a universally best algorithm suitable for all datasets. In this paper, we endeavor to explore principles of link prediction across diverse datasets from a data-centric perspective. We recognize three fundamental factors critical to link prediction: local structural proximity, global structural proximity, and feature proximity. We then unearth relationships among those factors where (i) global structural proximity only shows effectiveness when local structural proximity is deficient. (ii) The incompatibility can be found between feature and structural proximity. Such incompatibility leads to GNNs for Link Prediction (GNN4LP) consistently underperforming on edges where the feature proximity factor dominates. Inspired by these new insights from a data perspective, we offer practical instruction for GNN4LP model design and guidelines for selecting appropriate benchmark datasets for more comprehensive evaluations.


Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls and New Benchmarking

arXiv.org Artificial Intelligence

Link prediction attempts to predict whether an unseen edge exists based on only a portion of edges of a graph. A flurry of methods have been introduced in recent years that attempt to make use of graph neural networks (GNNs) for this task. Furthermore, new and diverse datasets have also been created to better evaluate the effectiveness of these new models. However, multiple pitfalls currently exist that hinder our ability to properly evaluate these new methods. These pitfalls mainly include: (1) Lower than actual performance on multiple baselines, (2) A lack of a unified data split and evaluation metric on some datasets, and (3) An unrealistic evaluation setting that uses easy negative samples. To overcome these challenges, we first conduct a fair comparison across prominent methods and datasets, utilizing the same dataset and hyperparameter search settings. We then create a more practical evaluation setting based on a Heuristic Related Sampling Technique (HeaRT), which samples hard negative samples via multiple heuristics. The new evaluation setting helps promote new challenges and opportunities in link prediction by aligning the evaluation with real-world situations. Our implementation and data are available at https://github.com/Juanhui28/HeaRT


Graph Enhanced BERT for Query Understanding

arXiv.org Artificial Intelligence

Query understanding plays a key role in exploring users' search intents and facilitating users to locate their most desired information. However, it is inherently challenging since it needs to capture semantic information from short and ambiguous queries and often requires massive task-specific labeled data. In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks because they can extract general semantic information from large-scale corpora. Therefore, there are unprecedented opportunities to adopt PLMs for query understanding. However, there is a gap between the goal of query understanding and existing pre-training strategies -- the goal of query understanding is to boost search performance while existing strategies rarely consider this goal. Thus, directly applying them to query understanding is sub-optimal. On the other hand, search logs contain user clicks between queries and urls that provide rich users' search behavioral information on queries beyond their content. Therefore, in this paper, we aim to fill this gap by exploring search logs. In particular, to incorporate search logs into pre-training, we first construct a query graph where nodes are queries and two queries are connected if they lead to clicks on the same urls. Then we propose a novel graph-enhanced pre-training framework, GE-BERT, which can leverage both query content and the query graph. In other words, GE-BERT can capture both the semantic information and the users' search behavioral information of queries. Extensive experiments on various query understanding tasks have demonstrated the effectiveness of the proposed framework.


Distance-Based Propagation for Efficient Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Knowledge graph completion (KGC) aims to predict unseen edges in knowledge graphs (KGs), resulting in the discovery of new facts. A new class of methods have been proposed to tackle this problem by aggregating path information. These methods have shown tremendous ability in the task of KGC. However they are plagued by efficiency issues. Though there are a few recent attempts to address this through learnable path pruning, they often sacrifice the performance to gain efficiency. In this work, we identify two intrinsic limitations of these methods that affect the efficiency and representation quality. To address the limitations, we introduce a new method, TAGNet, which is able to efficiently propagate information. This is achieved by only aggregating paths in a fixed window for each source-target pair. We demonstrate that the complexity of TAGNet is independent of the number of layers. Extensive experiments demonstrate that TAGNet can cut down on the number of propagated messages by as much as 90% while achieving competitive performance on multiple KG datasets. The code is available at https://github.com/HarryShomer/TAGNet.


Are Message Passing Neural Networks Really Helpful for Knowledge Graph Completion?

arXiv.org Artificial Intelligence

Knowledge graphs (KGs) facilitate a wide variety of applications. Despite great efforts in creation and maintenance, even the largest KGs are far from complete. Hence, KG completion (KGC) has become one of the most crucial tasks for KG research. Recently, considerable literature in this space has centered around the use of Message Passing (Graph) Neural Networks (MPNNs), to learn powerful embeddings. The success of these methods is naturally attributed to the use of MPNNs over simpler multi-layer perceptron (MLP) models, given their additional message passing (MP) component. In this work, we find that surprisingly, simple MLP models are able to achieve comparable performance to MPNNs, suggesting that MP may not be as crucial as previously believed. With further exploration, we show careful scoring function and loss function design has a much stronger influence on KGC model performance. This suggests a conflation of scoring function design, loss function design, and MP in prior work, with promising insights regarding the scalability of state-of-the-art KGC methods today, as well as careful attention to more suitable MP designs for KGC tasks tomorrow. Our codes are publicly available at: https://github.com/Juanhui28/Are_MPNNs_helpful.