Goto

Collaborating Authors

 Li, Jintang


Are Large Language Models In-Context Graph Learners?

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable in-context reasoning capabilities across a wide range of tasks, particularly with unstructured inputs such as language or images. However, LLMs struggle to handle structured data, such as graphs, due to their lack of understanding of non-Euclidean structures. As a result, without additional fine-tuning, their performance significantly lags behind that of graph neural networks (GNNs) in graph learning tasks. In this paper, we show that learning on graph data can be conceptualized as a retrieval-augmented generation (RAG) process, where specific instances (e.g., nodes or edges) act as queries, and the graph itself serves as the retrieved context. Building on this insight, we propose a series of RAG frameworks to enhance the in-context learning capabilities of LLMs for graph learning tasks. Comprehensive evaluations demonstrate that our proposed RAG frameworks significantly improve LLM performance on graph-based tasks, particularly in scenarios where a pretrained LLM must be used without modification or accessed via an API.


Measuring Diversity in Synthetic Datasets

arXiv.org Artificial Intelligence

Large language models (LLMs) are widely adopted to generate synthetic datasets for various natural language processing (NLP) tasks, such as text classification and summarization. However, accurately measuring the diversity of these synthetic datasets-an aspect crucial for robust model performance-remains a significant challenge. In this paper, we introduce DCScore, a novel method for measuring synthetic dataset diversity from a classification perspective. Specifically, DCScore formulates diversity evaluation as a sample classification task, leveraging mutual relationships among samples. We further provide theoretical verification of the diversity-related axioms satisfied by DCScore, highlighting its role as a principled diversity evaluation method. Experimental results on synthetic datasets reveal that DCScore enjoys a stronger correlation with multiple diversity pseudo-truths of evaluated datasets, underscoring its effectiveness. Moreover, both empirical and theoretical evidence demonstrate that DCScore substantially reduces computational costs compared to existing approaches. Code is available at: https://github.com/BlueWhaleLab/DCScore.


Revisiting and Benchmarking Graph Autoencoders: A Contrastive Learning Perspective

arXiv.org Machine Learning

Graph autoencoders (GAEs) are self-supervised learning models that can learn meaningful representations of graph-structured data by reconstructing the input graph from a low-dimensional latent space. Over the past few years, GAEs have gained significant attention in academia and industry. In particular, the recent advent of GAEs with masked autoencoding schemes marks a significant advancement in graph self-supervised learning research. While numerous GAEs have been proposed, the underlying mechanisms of GAEs are not well understood, and a comprehensive benchmark for GAEs is still lacking. We revisit the GAEs studied in previous works and demonstrate how contrastive learning principles can be applied to GAEs. Motivated by these insights, we introduce lrGAE (left-right GAE), a general and powerful GAE framework that leverages contrastive learning principles to learn meaningful representations. Our proposed lrGAE not only facilitates a deeper understanding of GAEs but also sets a new benchmark for GAEs across diverse graph-based learning tasks. In the last years, self-supervised learning (SSL) has emerged as a powerful learning paradigm for learning graph representations, approaching, and sometimes even surpassing, the performance of supervised counterparts on many downstream tasks Hjelm et al. (2019); van den Oord et al. (2018). Compared with supervised learning, self-supervised learning gets equal or even better performance with limited or no-labeled data which saves much annotation time and plenty of resources. In a nutshell, SSL purely makes use of rich unlabeled data via well-designed pretext tasks that exploit the underlying structure and patterns in the data. Most recent approaches are shaped by the design of pretext tasks and architectural design, which has led to two lines of research: contrastive and non-contrastive learning Garrido et al. (2023); Balestriero & LeCun (2022). As one of the most successful and widespread SSL strategies, contrastive learning has first shown promising performance in vision representation learning Chen et al. (2020); Gao et al. (2021). It brings together embeddings of different views of the same image while pushing away the embeddings from different ones. Contrastive learning develops rapidly and has recently been applied to the graph learning domain because of the scarcity of graph datasets with labels.


State Space Models on Temporal Graphs: A First-Principles Study

arXiv.org Artificial Intelligence

Over the past few years, research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors. In practice, temporal graphs are formalized as an ordered sequence of static graph snapshots observed at discrete time points. Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs. Yet, despite the promising results, RNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Recently, state space models (SSMs), which are framed as discretized representations of an underlying continuous-time linear dynamical system, have garnered substantial attention and achieved breakthrough advancements in independent sequence modeling. In this work, we undertake a principled investigation that extends SSM theory to temporal graphs by integrating structural information into the online approximation objective via the adoption of a Laplacian regularization term. The emergent continuous-time system introduces novel algorithmic challenges, thereby necessitating our development of GraphSSM, a graph state space model for modeling the dynamics of temporal graphs. Extensive experimental results demonstrate the effectiveness of our GraphSSM framework across various temporal graph benchmarks.


Fair Graph Representation Learning via Sensitive Attribute Disentanglement

arXiv.org Artificial Intelligence

Group fairness for Graph Neural Networks (GNNs), which emphasizes algorithmic decisions neither favoring nor harming certain groups defined by sensitive attributes (e.g., race and gender), has gained considerable attention. In particular, the objective of group fairness is to ensure that the decisions made by GNNs are independent of the sensitive attribute. To achieve this objective, most existing approaches involve eliminating sensitive attribute information in node representations or algorithmic decisions. However, such ways may also eliminate task-related information due to its inherent correlation with the sensitive attribute, leading to a sacrifice in utility. In this work, we focus on improving the fairness of GNNs while preserving task-related information and propose a fair GNN framework named FairSAD. Instead of eliminating sensitive attribute information, FairSAD enhances the fairness of GNNs via Sensitive Attribute Disentanglement (SAD), which separates the sensitive attribute-related information into an independent component to mitigate its impact. Additionally, FairSAD utilizes a channel masking mechanism to adaptively identify the sensitive attribute-related component and subsequently decorrelates it. Overall, FairSAD minimizes the impact of the sensitive attribute on GNN outcomes rather than eliminating sensitive attributes, thereby preserving task-related information associated with the sensitive attribute. Furthermore, experiments conducted on several real-world datasets demonstrate that FairSAD outperforms other state-of-the-art methods by a significant margin in terms of both fairness and utility performance. Our source code is available at https://github.com/ZzoomD/FairSAD.


SGHormer: An Energy-Saving Graph Transformer Driven by Spikes

arXiv.org Artificial Intelligence

Graph Transformers (GTs) with powerful representation learning ability make a huge success in wide range of graph tasks. However, the costs behind outstanding performances of GTs are higher energy consumption and computational overhead. The complex structure and quadratic complexity during attention calculation in vanilla transformer seriously hinder its scalability on the large-scale graph data. Though existing methods have made strides in simplifying combinations among blocks or attention-learning paradigm to improve GTs' efficiency, a series of energy-saving solutions originated from biologically plausible structures are rarely taken into consideration when constructing GT framework. To this end, we propose a new spiking-based graph transformer (SGHormer). It turns full-precision embeddings into sparse and binarized spikes to reduce memory and computational costs. The spiking graph self-attention and spiking rectify blocks in SGHormer explicitly capture global structure information and recover the expressive power of spiking embeddings, respectively. In experiments, SGHormer achieves comparable performances to other full-precision GTs with extremely low computational energy consumption. The results show that SGHomer makes a remarkable progress in the field of low-energy GTs.


Rethinking and Simplifying Bootstrapped Graph Latents

arXiv.org Artificial Intelligence

Graph contrastive learning (GCL) has emerged as a representative paradigm in graph self-supervised learning, where negative samples are commonly regarded as the key to preventing model collapse and producing distinguishable representations. Recent studies have shown that GCL without negative samples can achieve state-of-the-art performance as well as scalability improvement, with bootstrapped graph latent (BGRL) as a prominent step forward. However, BGRL relies on a complex architecture to maintain the ability to scatter representations, and the underlying mechanisms enabling the success remain largely unexplored. In this paper, we introduce an instance-level decorrelation perspective to tackle the aforementioned issue and leverage it as a springboard to reveal the potential unnecessary model complexity within BGRL. Based on our findings, we present SGCL, a simple yet effective GCL framework that utilizes the outputs from two consecutive iterations as positive pairs, eliminating the negative samples. SGCL only requires a single graph augmentation and a single graph encoder without additional parameters. Extensive experiments conducted on various graph benchmarks demonstrate that SGCL can achieve competitive performance with fewer parameters, lower time and space costs, and significant convergence speedup.


LasTGL: An Industrial Framework for Large-Scale Temporal Graph Learning

arXiv.org Artificial Intelligence

Over the past few years, graph neural networks (GNNs) have become powerful and practical tools for learning on (static) graph-structure data. However, many real-world applications, such as social networks and e-commerce, involve temporal graphs where nodes and edges are dynamically evolving. Temporal graph neural networks (TGNNs) have progressively emerged as an extension of GNNs to address time-evolving graphs and have gradually become a trending research topic in both academics and industry. Advancing research and application in such an emerging field necessitates the development of new tools to compose TGNN models and unify their different schemes for dealing with temporal graphs. In this work, we introduce LasTGL, an industrial framework that integrates unified and extensible implementations of common temporal graph learning algorithms for various advanced tasks. The purpose of LasTGL is to provide the essential building blocks for solving temporal graph learning tasks, focusing on the guiding principles of user-friendliness and quick prototyping on which PyTorch is based. In particular, LasTGL provides comprehensive temporal graph datasets, TGNN models and utilities along with well-documented tutorials, making it suitable for both absolute beginners and expert deep learning practitioners alike.


The Devil is in the Data: Learning Fair Graph Neural Networks via Partial Knowledge Distillation

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) are being increasingly used in many high-stakes tasks, and as a result, there is growing attention on their fairness recently. GNNs have been shown to be unfair as they tend to make discriminatory decisions toward certain demographic groups, divided by sensitive attributes such as gender and race. While recent works have been devoted to improving their fairness performance, they often require accessible demographic information. This greatly limits their applicability in real-world scenarios due to legal restrictions. To address this problem, we present a demographic-agnostic method to learn fair GNNs via knowledge distillation, namely FairGKD. Our work is motivated by the empirical observation that training GNNs on partial data (i.e., only node attributes or topology data) can improve their fairness, albeit at the cost of utility. To make a balanced trade-off between fairness and utility performance, we employ a set of fairness experts (i.e., GNNs trained on different partial data) to construct the synthetic teacher, which distills fairer and informative knowledge to guide the learning of the GNN student. Experiments on several benchmark datasets demonstrate that FairGKD, which does not require access to demographic information, significantly improves the fairness of GNNs by a large margin while maintaining their utility.


Hetero$^2$Net: Heterophily-aware Representation Learning on Heterogenerous Graphs

arXiv.org Artificial Intelligence

Real-world graphs are typically complex, exhibiting heterogeneity in the global structure, as well as strong heterophily within local neighborhoods. While a growing body of literature has revealed the limitations of common graph neural networks (GNNs) in handling homogeneous graphs with heterophily, little work has been conducted on investigating the heterophily properties in the context of heterogeneous graphs. To bridge this research gap, we identify the heterophily in heterogeneous graphs using metapaths and propose two practical metrics to quantitatively describe the levels of heterophily. Through in-depth investigations on several real-world heterogeneous graphs exhibiting varying levels of heterophily, we have observed that heterogeneous graph neural networks (HGNNs), which inherit many mechanisms from GNNs designed for homogeneous graphs, fail to generalize to heterogeneous graphs with heterophily or low level of homophily. To address the challenge, we present Hetero$^2$Net, a heterophily-aware HGNN that incorporates both masked metapath prediction and masked label prediction tasks to effectively and flexibly handle both homophilic and heterophilic heterogeneous graphs. We evaluate the performance of Hetero$^2$Net on five real-world heterogeneous graph benchmarks with varying levels of heterophily. The results demonstrate that Hetero$^2$Net outperforms strong baselines in the semi-supervised node classification task, providing valuable insights into effectively handling more complex heterogeneous graphs.