Goto

Collaborating Authors

 Li, Jiawen


Multimodal Distillation-Driven Ensemble Learning for Long-Tailed Histopathology Whole Slide Images Analysis

arXiv.org Artificial Intelligence

Multiple Instance Learning (MIL) plays a significant role in computational pathology, enabling weakly supervised analysis of Whole Slide Image (WSI) datasets. The field of WSI analysis is confronted with a severe long-tailed distribution problem, which significantly impacts the performance of classifiers. Long-tailed distributions lead to class imbalance, where some classes have sparse samples while others are abundant, making it difficult for classifiers to accurately identify minority class samples. To address this issue, we propose an ensemble learning method based on MIL, which employs expert decoders with shared aggregators and consistency constraints to learn diverse distributions and reduce the impact of class imbalance on classifier performance. Moreover, we introduce a multimodal distillation framework that leverages text encoders pre-trained on pathology-text pairs to distill knowledge and guide the MIL aggregator in capturing stronger semantic features relevant to class information. To ensure flexibility, we use learnable prompts to guide the distillation process of the pre-trained text encoder, avoiding limitations imposed by specific prompts. Our method, MDE-MIL, integrates multiple expert branches focusing on specific data distributions to address long-tailed issues. Consistency control ensures generalization across classes. Multimodal distillation enhances feature extraction. Experiments on Camelyon+-LT and PANDA-LT datasets show it outperforms state-of-the-art methods.


PolyLUT: Ultra-low Latency Polynomial Inference with Hardware-Aware Structured Pruning

arXiv.org Artificial Intelligence

Standard deep neural network inference involves the computation of interleaved linear maps and nonlinear activation functions. Prior work for ultra-low latency implementations has hardcoded these operations inside FPGA lookup tables (LUTs). However, FPGA LUTs can implement a much greater variety of functions. In this paper, we propose a novel approach to training DNNs for FPGA deployment using multivariate polynomials as the basic building block. Our method takes advantage of the flexibility offered by the soft logic, hiding the polynomial evaluation inside the LUTs with minimal overhead. By using polynomial building blocks, we achieve the same accuracy using considerably fewer layers of soft logic than by using linear functions, leading to significant latency and area improvements. LUT-based implementations also face a significant challenge: the LUT size grows exponentially with the number of inputs. Prior work relies on a priori fixed sparsity, with results heavily dependent on seed selection. To address this, we propose a structured pruning strategy using a bespoke hardware-aware group regularizer that encourages a particular sparsity pattern that leads to a small number of inputs per neuron. We demonstrate the effectiveness of PolyLUT on three tasks: network intrusion detection, jet identification at the CERN Large Hadron Collider, and MNIST.


Molecule Graph Networks with Many-body Equivariant Interactions

arXiv.org Artificial Intelligence

In recent years, machine learning (ML) models have shown great success in materials science by accurately predicting quantum properties of atomistic systems several orders of magnitude faster than ab initio simulations [1]. These ML models have practically assisted researchers in developing novel materials across various fields, such as fluorescent molecules [2], electret polymers [3] and so on. Graph neural networks (GNNs) [4, 5] are particularly notable among ML models for atomic systems because molecules are especially suitable for 3D graph representations where each atom is characterized by its 3D Cartesian coordinate. The 3D molecular information, such as bond lengths and angles, is crucial for model learning [6, 7, 8]. However, these rotationally invariant representations may lack directional information, causing the model to view distinct structures as identical [9, 10].


Halfway Escape Optimization: A Quantum-Inspired Solution for Complex Optimization Problems

arXiv.org Artificial Intelligence

This paper first proposes the Halfway Escape Optimization (HEO) algorithm, a novel quantum-inspired metaheuristic designed to address complex optimization problems characterized by rugged landscapes and high-dimensionality with an efficient convergence rate. The study presents a comprehensive comparative evaluation of HEO's performance against established optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Artificial Fish Swarm Algorithm (AFSA), Grey Wolf Optimizer (GWO), and Quantum behaved Particle Swarm Optimization (QPSO). The primary analysis encompasses 14 benchmark functions with dimension 30, demonstrating HEO's effectiveness and adaptability in navigating complex optimization landscapes and providing valuable insights into its performance. The simple test of HEO in Traveling Salesman Problem (TSP) also infers its feasibility in real-time applications.


DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks

arXiv.org Artificial Intelligence

Adversarial training has been proven to be a powerful regularization method to improve the generalization of models. However, current adversarial training methods only attack the original input sample or the embedding vectors, and their attacks lack coverage and diversity. To further enhance the breadth and depth of attack, we propose a novel masked weight adversarial training method called DropAttack, which enhances generalization of model by adding intentionally worst-case adversarial perturbations to both the input and hidden layers in different dimensions and minimize the adversarial risks generated by each layer. DropAttack is a general technique and can be adopt to a wide variety of neural networks with different architectures. To validate the effectiveness of the proposed method, we used five public datasets in the fields of natural language processing (NLP) and computer vision (CV) for experimental evaluating. We compare the proposed method with other adversarial training methods and regularization methods, and our method achieves state-of-the-art on all datasets. In addition, Dropattack can achieve the same performance when it use only a half training data compared to other standard training method. Theoretical analysis reveals that DropAttack can perform gradient regularization at random on some of the input and wight parameters of the model. Further visualization experiments show that DropAttack can push the minimum risk of the model to a lower and flatter loss landscapes. Our source code is publicly available on https://github.com/nishiwen1214/DropAttack.