Li, Jiashi
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI, null, Guo, Daya, Yang, Dejian, Zhang, Haowei, Song, Junxiao, Zhang, Ruoyu, Xu, Runxin, Zhu, Qihao, Ma, Shirong, Wang, Peiyi, Bi, Xiao, Zhang, Xiaokang, Yu, Xingkai, Wu, Yu, Wu, Z. F., Gou, Zhibin, Shao, Zhihong, Li, Zhuoshu, Gao, Ziyi, Liu, Aixin, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Feng, Bei, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Qu, Hui, Li, Hui, Guo, Jianzhong, Li, Jiashi, Wang, Jiawei, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Cai, J. L., Ni, Jiaqi, Liang, Jian, Chen, Jin, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Zhao, Liang, Wang, Litong, Zhang, Liyue, Xu, Lei, Xia, Leyi, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Meng, Wang, Miaojun, Li, Mingming, Tian, Ning, Huang, Panpan, Zhang, Peng, Wang, Qiancheng, Chen, Qinyu, Du, Qiushi, Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Chen, R. J., Jin, R. L., Chen, Ruyi, Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Ye, Shengfeng, Wang, Shiyu, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Li, S. S., Zhou, Shuang, Wu, Shaoqing, Ye, Shengfeng, Yun, Tao, Pei, Tian, Sun, Tianyu, Wang, T., Zeng, Wangding, Zhao, Wanjia, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Xiao, W. L., An, Wei, Liu, Xiaodong, Wang, Xiaohan, Chen, Xiaokang, Nie, Xiaotao, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, X. Q., Jin, Xiangyue, Shen, Xiaojin, Chen, Xiaosha, Sun, Xiaowen, Wang, Xiaoxiang, Song, Xinnan, Zhou, Xinyi, Wang, Xianzu, Shan, Xinxia, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Yang, Xu, Yanhong, Li, Yao, Zhao, Yao, Sun, Yaofeng, Wang, Yaohui, Yu, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Ou, Yuan, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Xiong, Yunfan, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yaohui, Zheng, Yi, Zhu, Yuchen, Ma, Yunxian, Tang, Ying, Zha, Yukun, Yan, Yuting, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Ma, Zhicheng, Yan, Zhigang, Wu, Zhiyu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Pan, Zizheng, Huang, Zhen, Xu, Zhipeng, Zhang, Zhongyu, Zhang, Zhen
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.
DeepSeek-V3 Technical Report
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Wang, Jiawei, Chen, Jin, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Song, Junxiao, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Wang, Litong, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Wang, Qiancheng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Xu, Runxin, Zhang, Ruoyu, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Wang, T., Yun, Tao, Pei, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, Zhao, Wanjia, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Zhang, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yu, Xingkai, Song, Xinnan, Shan, Xinxia, Zhou, Xinyi, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang, Yang, Xu, Yanhong, Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Yu, Yi, Zheng, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Tang, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Wu, Yu, Ou, Yuan, Zhu, Yuchen, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Zha, Yukun, Xiong, Yunfan, Ma, Yunxian, Yan, Yuting, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Wu, Z. F., Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Gou, Zhibin, Ma, Zhicheng, Yan, Zhigang, Shao, Zhihong, Xu, Zhipeng, Wu, Zhiyu, Zhang, Zhongyu, Li, Zhuoshu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Gao, Ziyi, Pan, Zizheng
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
Data-Centric and Heterogeneity-Adaptive Sequence Parallelism for Efficient LLM Training
Wang, Yujie, Wang, Shiju, Zhu, Shenhan, Fu, Fangcheng, Liu, Xinyi, Xiao, Xuefeng, Li, Huixia, Li, Jiashi, Wu, Faming, Cui, Bin
Extending the context length (i.e., the maximum supported sequence length) of LLMs is of paramount significance. To facilitate long context training of LLMs, sequence parallelism has emerged as an essential technique, which scatters each input sequence across multiple devices and necessitates communication to process the sequence. In essence, existing sequence parallelism methods assume homogeneous sequence lengths (i.e., all input sequences are equal in length) and therefore leverages a single, static scattering strategy for all input sequences. However, in reality, the sequence lengths in LLM training corpora exhibit substantial variability, often following a long-tail distribution, which leads to workload heterogeneity. In this paper, we show that employing a single, static strategy results in inefficiency and resource under-utilization, highlighting the need for adaptive approaches to handle the heterogeneous workloads across sequences. To address this, we propose a heterogeneity-adaptive sequence parallelism method. For each training step, our approach captures the variability in sequence lengths and assigns the optimal combination of scattering strategies based on workload characteristics. We model this problem as a linear programming optimization and design an efficient and effective solver to find the optimal solution. Furthermore, we implement our method in a high-performance system that supports adaptive parallelization in distributed LLM training. Experimental results demonstrate that our system outperforms state-of-the-art training frameworks by up to 1.98x.
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Wang, Bin, Wang, Bingxuan, Liu, Bo, Zhao, Chenggang, Dengr, Chengqi, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Xu, Hanwei, Yang, Hao, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Chen, Jin, Yuan, Jingyang, Qiu, Junjie, Song, Junxiao, Dong, Kai, Gao, Kaige, Guan, Kang, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Pan, Ruizhe, Xu, Runxin, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Zheng, Size, Wang, T., Pei, Tian, Yuan, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Liu, Xin, Xie, Xin, Yu, Xingkai, Song, Xinnan, Zhou, Xinyi, Yang, Xinyu, Lu, Xuan, Su, Xuecheng, Wu, Y., Li, Y. K., Wei, Y. X., Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Zheng, Yi, Zhang, Yichao, Xiong, Yiliang, Zhao, Yilong, He, Ying, Tang, Ying, Piao, Yishi, Dong, Yixin, Tan, Yixuan, Liu, Yiyuan, Wang, Yongji, Guo, Yongqiang, Zhu, Yuchen, Wang, Yuduan, Zou, Yuheng, Zha, Yukun, Ma, Yunxian, Yan, Yuting, You, Yuxiang, Liu, Yuxuan, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Hao, Zhewen, Shao, Zhihong, Wen, Zhiniu, Xu, Zhipeng, Zhang, Zhongyu, Li, Zhuoshu, Wang, Zihan, Gu, Zihui, Li, Zilin, Xie, Ziwei
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
DeepSeek-AI, null, Zhu, Qihao, Guo, Daya, Shao, Zhihong, Yang, Dejian, Wang, Peiyi, Xu, Runxin, Wu, Y., Li, Yukun, Gao, Huazuo, Ma, Shirong, Zeng, Wangding, Bi, Xiao, Gu, Zihui, Xu, Hanwei, Dai, Damai, Dong, Kai, Zhang, Liyue, Piao, Yishi, Gou, Zhibin, Xie, Zhenda, Hao, Zhewen, Wang, Bingxuan, Song, Junxiao, Chen, Deli, Xie, Xin, Guan, Kang, You, Yuxiang, Liu, Aixin, Du, Qiushi, Gao, Wenjun, Lu, Xuan, Chen, Qinyu, Wang, Yaohui, Deng, Chengqi, Li, Jiashi, Zhao, Chenggang, Ruan, Chong, Luo, Fuli, Liang, Wenfeng
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.
DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models
Dai, Damai, Deng, Chengqi, Zhao, Chenggang, Xu, R. X., Gao, Huazuo, Chen, Deli, Li, Jiashi, Zeng, Wangding, Yu, Xingkai, Wu, Y., Xie, Zhenda, Li, Y. K., Huang, Panpan, Luo, Fuli, Ruan, Chong, Sui, Zhifang, Liang, Wenfeng
In the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for managing computational costs when scaling up model parameters. However, conventional MoE architectures like GShard, which activate the top-$K$ out of $N$ experts, face challenges in ensuring expert specialization, i.e. each expert acquires non-overlapping and focused knowledge. In response, we propose the DeepSeekMoE architecture towards ultimate expert specialization. It involves two principal strategies: (1) finely segmenting the experts into $mN$ ones and activating $mK$ from them, allowing for a more flexible combination of activated experts; (2) isolating $K_s$ experts as shared ones, aiming at capturing common knowledge and mitigating redundancy in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that DeepSeekMoE 2B achieves comparable performance with GShard 2.9B, which has 1.5 times the expert parameters and computation. In addition, DeepSeekMoE 2B nearly approaches the performance of its dense counterpart with the same number of total parameters, which set the upper bound of MoE models. Subsequently, we scale up DeepSeekMoE to 16B parameters and show that it achieves comparable performance with LLaMA2 7B, with only about 40% of computations. Further, our preliminary efforts to scale up DeepSeekMoE to 145B parameters consistently validate its substantial advantages over the GShard architecture, and show its performance comparable with DeepSeek 67B, using only 28.5% (maybe even 18.2%) of computations.
DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
DeepSeek-AI, null, :, null, Bi, Xiao, Chen, Deli, Chen, Guanting, Chen, Shanhuang, Dai, Damai, Deng, Chengqi, Ding, Honghui, Dong, Kai, Du, Qiushi, Fu, Zhe, Gao, Huazuo, Gao, Kaige, Gao, Wenjun, Ge, Ruiqi, Guan, Kang, Guo, Daya, Guo, Jianzhong, Hao, Guangbo, Hao, Zhewen, He, Ying, Hu, Wenjie, Huang, Panpan, Li, Erhang, Li, Guowei, Li, Jiashi, Li, Yao, Li, Y. K., Liang, Wenfeng, Lin, Fangyun, Liu, A. X., Liu, Bo, Liu, Wen, Liu, Xiaodong, Liu, Xin, Liu, Yiyuan, Lu, Haoyu, Lu, Shanghao, Luo, Fuli, Ma, Shirong, Nie, Xiaotao, Pei, Tian, Piao, Yishi, Qiu, Junjie, Qu, Hui, Ren, Tongzheng, Ren, Zehui, Ruan, Chong, Sha, Zhangli, Shao, Zhihong, Song, Junxiao, Su, Xuecheng, Sun, Jingxiang, Sun, Yaofeng, Tang, Minghui, Wang, Bingxuan, Wang, Peiyi, Wang, Shiyu, Wang, Yaohui, Wang, Yongji, Wu, Tong, Wu, Y., Xie, Xin, Xie, Zhenda, Xie, Ziwei, Xiong, Yiliang, Xu, Hanwei, Xu, R. X., Xu, Yanhong, Yang, Dejian, You, Yuxiang, Yu, Shuiping, Yu, Xingkai, Zhang, B., Zhang, Haowei, Zhang, Lecong, Zhang, Liyue, Zhang, Mingchuan, Zhang, Minghua, Zhang, Wentao, Zhang, Yichao, Zhao, Chenggang, Zhao, Yao, Zhou, Shangyan, Zhou, Shunfeng, Zhu, Qihao, Zou, Yuheng
The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.
Control-A-Video: Controllable Text-to-Video Generation with Diffusion Models
Chen, Weifeng, Ji, Yatai, Wu, Jie, Wu, Hefeng, Xie, Pan, Li, Jiashi, Xia, Xin, Xiao, Xuefeng, Lin, Liang
Recent advancements in diffusion models have unlocked unprecedented abilities in visual creation. However, current text-to-video generation models struggle with the trade-off among movement range, action coherence and object consistency. To mitigate this issue, we present a controllable text-to-video (T2V) diffusion model, called Control-A-Video, capable of maintaining consistency while customizable video synthesis. Based on a pre-trained conditional text-to-image (T2I) diffusion model, our model aims to generate videos conditioned on a sequence of control signals, such as edge or depth maps. For the purpose of improving object consistency, Control-A-Video integrates motion priors and content priors into video generation. We propose two motion-adaptive noise initialization strategies, which are based on pixel residual and optical flow, to introduce motion priors from input videos, producing more coherent videos. Moreover, a first-frame conditioned controller is proposed to generate videos from content priors of the first frame, which facilitates the semantic alignment with text and allows longer video generation in an auto-regressive manner. With the proposed architecture and strategies, our model achieves resource-efficient convergence and generate consistent and coherent videos with fine-grained control. Extensive experiments demonstrate its success in various video generative tasks such as video editing and video style transfer, outperforming previous methods in terms of consistency and quality.
SparseByteNN: A Novel Mobile Inference Acceleration Framework Based on Fine-Grained Group Sparsity
Xu, Haitao, Liu, Songwei, Xu, Yuyang, Wang, Shuai, Li, Jiashi, Yan, Chenqian, Li, Liangqiang, Fu, Lean, Pan, Xin, Chen, Fangmin
To address the challenge of increasing network size, researchers have developed sparse models through network pruning. However, maintaining model accuracy while achieving significant speedups on general computing devices remains an open problem. In this paper, we present a novel mobile inference acceleration framework SparseByteNN, which leverages fine-grained kernel sparsity to achieve real-time execution as well as high accuracy. Our framework consists of two parts: (a) A fine-grained kernel sparsity schema with a sparsity granularity between structured pruning and unstructured pruning. It designs multiple sparse patterns for different operators. Combined with our proposed whole network rearrangement strategy, the schema achieves a high compression rate and high precision at the same time. (b) Inference engine co-optimized with the sparse pattern. The conventional wisdom is that this reduction in theoretical FLOPs does not translate into real-world efficiency gains. We aim to correct this misconception by introducing a family of efficient sparse kernels for ARM and WebAssembly. Equipped with our efficient implementation of sparse primitives, we show that sparse versions of MobileNet-v1 outperform strong dense baselines on the efficiency-accuracy curve. Experimental results on Qualcomm 855 show that for 30% sparse MobileNet-v1, SparseByteNN achieves 1.27x speedup over the dense version and 1.29x speedup over the state-of-the-art sparse inference engine MNN with a slight accuracy drop of 0.224%. The source code of SparseByteNN will be available at https://github.com/lswzjuer/SparseByteNN