Li, Jianxin
Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Chen, Tianyu, Fu, Xingcheng, Gao, Yisen, Qian, Haodong, Wei, Yuecen, Yan, Kun, Zhou, Haoyi, Li, Jianxin
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
Instructing the Architecture Search for Spatial-temporal Sequence Forecasting with LLM
Xue, Xin, Zhou, Haoyi, Chen, Tianyu, Zhang, Shuai, Long, Yizhou, Li, Jianxin
Spatial-temporal sequence forecasting (STSF) is a long-standing research problem with widespread real-world applications. Neural architecture search (NAS), which automates the neural network design, has been shown effective in tackling the STSF problem. However, the existing NAS methods for STSF focus on generating architectures in a time-consuming data-driven fashion, which heavily limits their ability to use background knowledge and explore the complicated search trajectory. Large language models (LLMs) have shown remarkable ability in decision-making with comprehensive internal world knowledge, but how it could benefit NAS for STSF remains unexplored. In this paper, we propose a novel NAS method for STSF based on LLM. Instead of directly generate architectures with LLM, We inspire the LLM's capability with a multi-level enhancement mechanism. Specifically, on the step-level, we decompose the generation task into decision steps with powerful prompt engineering and inspire LLM to serve as instructor for architecture search based on its internal knowledge. On the instance-level, we utilize a one-step tuning framework to quickly evaluate the architecture instance and a memory bank to cumulate knowledge to improve LLM's search ability. On the task-level, we propose a two-stage architecture search, balancing the exploration stage and optimization stage, to reduce the possibility of being trapped in local optima. Extensive experimental results demonstrate that our method can achieve competitive effectiveness with superior efficiency against existing NAS methods for STSF.
Dual Defense: Enhancing Privacy and Mitigating Poisoning Attacks in Federated Learning
Xu, Runhua, Gao, Shiqi, Li, Chao, Joshi, James, Li, Jianxin
Federated learning (FL) is inherently susceptible to privacy breaches and poisoning attacks. To tackle these challenges, researchers have separately devised secure aggregation mechanisms to protect data privacy and robust aggregation methods that withstand poisoning attacks. However, simultaneously addressing both concerns is challenging; secure aggregation facilitates poisoning attacks as most anomaly detection techniques require access to unencrypted local model updates, which are obscured by secure aggregation. Few recent efforts to simultaneously tackle both challenges offen depend on impractical assumption of non-colluding two-server setups that disrupt FL's topology, or three-party computation which introduces scalability issues, complicating deployment and application. To overcome this dilemma, this paper introduce a Dual Defense Federated learning (DDFed) framework. DDFed simultaneously boosts privacy protection and mitigates poisoning attacks, without introducing new participant roles or disrupting the existing FL topology. DDFed initially leverages cutting-edge fully homomorphic encryption (FHE) to securely aggregate model updates, without the impractical requirement for non-colluding two-server setups and ensures strong privacy protection. Additionally, we proposes a unique two-phase anomaly detection mechanism for encrypted model updates, featuring secure similarity computation and feedback-driven collaborative selection, with additional measures to prevent potential privacy breaches from Byzantine clients incorporated into the detection process. We conducted extensive experiments on various model poisoning attacks and FL scenarios, including both cross-device and cross-silo FL. Experiments on publicly available datasets demonstrate that DDFed successfully protects model privacy and effectively defends against model poisoning threats.
Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification
Luo, Jiayi, Sun, Qingyun, Yuan, Haonan, Fu, Xingcheng, Li, Jianxin
Adversarial evasion attacks pose significant threats to graph learning, with lines of studies that have improved the robustness of Graph Neural Networks (GNNs). However, existing works rely on priors about clean graphs or attacking strategies, which are often heuristic and inconsistent. To achieve robust graph learning over different types of evasion attacks and diverse datasets, we investigate this problem from a prior-free structure purification perspective. Specifically, we propose a novel Diffusion-based Structure Purification framework named DiffSP, which creatively incorporates the graph diffusion model to learn intrinsic distributions of clean graphs and purify the perturbed structures by removing adversaries under the direction of the captured predictive patterns without relying on priors. DiffSP is divided into the forward diffusion process and the reverse denoising process, during which structure purification is achieved. To avoid valuable information loss during the forward process, we propose an LID-driven nonisotropic diffusion mechanism to selectively inject noise anisotropically. To promote semantic alignment between the clean graph and the purified graph generated during the reverse process, we reduce the generation uncertainty by the proposed graph transfer entropy guided denoising mechanism. Extensive experiments demonstrate the superior robustness of DiffSP against evasion attacks.
TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning
Xu, Runhua, Li, Bo, Li, Chao, Joshi, James B. D., Ma, Shuai, Li, Jianxin
Federated learning is a computing paradigm that enhances privacy by enabling multiple parties to collaboratively train a machine learning model without revealing personal data. However, current research indicates that traditional federated learning platforms are unable to ensure privacy due to privacy leaks caused by the interchange of gradients. To achieve privacy-preserving federated learning, integrating secure aggregation mechanisms is essential. Unfortunately, existing solutions are vulnerable to recently demonstrated inference attacks such as the disaggregation attack. This paper proposes TAPFed, an approach for achieving privacy-preserving federated learning in the context of multiple decentralized aggregators with malicious actors. TAPFed uses a proposed threshold functional encryption scheme and allows for a certain number of malicious aggregators while maintaining security and privacy. We provide formal security and privacy analyses of TAPFed and compare it to various baselines through experimental evaluation. Our results show that TAPFed offers equivalent performance in terms of model quality compared to state-of-the-art approaches while reducing transmission overhead by 29%-45% across different model training scenarios. Most importantly, TAPFed can defend against recently demonstrated inference attacks caused by curious aggregators, which the majority of existing approaches are susceptible to.
Enhancing Transformers for Generalizable First-Order Logical Entailment
Zheng, Tianshi, Wang, Jiazheng, Wang, Zihao, Bai, Jiaxin, Yin, Hang, Deng, Zheye, Song, Yangqiu, Li, Jianxin
Transformers, as a fundamental deep learning architecture, have demonstrated remarkable capabilities in reasoning. This paper investigates the generalizable first-order logical reasoning ability of transformers with their parameterized knowledge and explores ways to improve it. The first-order reasoning capability of transformers is assessed through their ability to perform first-order logical entailment, which is quantitatively measured by their performance in answering knowledge graph queries. We establish connections between (1) two types of distribution shifts studied in out-of-distribution generalization and (2) the unseen knowledge and query settings discussed in the task of knowledge graph query answering, enabling a characterization of fine-grained generalizability. Results on our comprehensive dataset show that transformers outperform previous methods specifically designed for this task and provide detailed empirical evidence on the impact of input query syntax, token embedding, and transformer architectures on the reasoning capability of transformers. Interestingly, our findings reveal a mismatch between positional encoding and other design choices in transformer architectures employed in prior practices. This discovery motivates us to propose a more sophisticated, logic-aware architecture, TEGA, to enhance the capability for generalizable first-order logical entailment in transformers.
Discrete Curvature Graph Information Bottleneck
Fu, Xingcheng, Wang, Jian, Gao, Yisen, Sun, Qingyun, Yuan, Haonan, Li, Jianxin, Li, Xianxian
Graph neural networks(GNNs) have been demonstrated to depend on whether the node effective information is sufficiently passing. Discrete curvature (Ricci curvature) is used to study graph connectivity and information propagation efficiency with a geometric perspective, and has been raised in recent years to explore the efficient message-passing structure of GNNs. However, most empirical studies are based on directly observed graph structures or heuristic topological assumptions and lack in-depth exploration of underlying optimal information transport structures for downstream tasks. We suggest that graph curvature optimization is more in-depth and essential than directly rewiring or learning for graph structure with richer message-passing characterization and better information transport interpretability. From both graph geometry and information theory perspectives, we propose the novel Discrete Curvature Graph Information Bottleneck (CurvGIB) framework to optimize the information transport structure and learn better node representations simultaneously. CurvGIB advances the Variational Information Bottleneck (VIB) principle for Ricci curvature optimization to learn the optimal information transport pattern for specific downstream tasks. The learned Ricci curvature is used to refine the optimal transport structure of the graph, and the node representation is fully and efficiently learned. Moreover, for the computational complexity of Ricci curvature differentiation, we combine Ricci flow and VIB to deduce a curvature optimization approximation to form a tractable IB objective function. Extensive experiments on various datasets demonstrate the superior effectiveness and interpretability of CurvGIB.
XRAG: eXamining the Core -- Benchmarking Foundational Components in Advanced Retrieval-Augmented Generation
Mao, Qianren, Luo, Yangyifei, Zhang, Jinlong, Hao, Hanwen, Cao, Zhilong, Wang, Xiaolong, Guan, Xiao, Huang, Zhenting, Jiang, Weifeng, Guo, Shuyu, Han, Zhentao, Zhang, Qili, Tao, Siyuan, Liu, Yujie, Liu, Junnan, Tan, Zhixing, Sun, Jie, Li, Bo, Liu, Xudong, Zhang, Richong, Li, Jianxin
Retrieval-augmented generation (RAG) synergizes the retrieval of pertinent data with the generative capabilities of Large Language Models (LLMs), ensuring that the generated output is not only contextually relevant but also accurate and current. We introduce XRAG, an open-source, modular codebase that facilitates exhaustive evaluation of the performance of foundational components of advanced RAG modules. These components are systematically categorized into four core phases: pre-retrieval, retrieval, post-retrieval, and generation. We systematically analyse them across reconfigured datasets, providing a comprehensive benchmark for their effectiveness. As the complexity of RAG systems continues to escalate, we underscore the critical need to identify potential failure points in RAG systems. We formulate a suite of experimental methodologies and diagnostic testing protocols to dissect the failure points inherent in RAG engineering. Subsequently, we proffer bespoke solutions aimed at bolstering the overall performance of these modules. Our work thoroughly evaluates the performance of advanced core components in RAG systems, providing insights into optimizations for prevalent failure points.
Graph Size-imbalanced Learning with Energy-guided Structural Smoothing
Qin, Jiawen, Huang, Pengfeng, Sun, Qingyun, Ji, Cheng, Fu, Xingcheng, Li, Jianxin
Graph is a prevalent data structure employed to represent the relationships between entities, frequently serving as a tool to depict and simulate numerous systems, such as molecules and social networks. However, real-world graphs usually suffer from the size-imbalanced problem in the multi-graph classification, i.e., a long-tailed distribution with respect to the number of nodes. Recent studies find that off-the-shelf Graph Neural Networks (GNNs) would compromise model performance under the long-tailed settings. We investigate this phenomenon and discover that the long-tailed graph distribution greatly exacerbates the discrepancies in structural features. To alleviate this problem, we propose a novel energy-based size-imbalanced learning framework named \textbf{SIMBA}, which smooths the features between head and tail graphs and re-weights them based on the energy propagation. Specifically, we construct a higher-level graph abstraction named \textit{Graphs-to-Graph} according to the correlations between graphs to link independent graphs and smooths the structural discrepancies. We further devise an energy-based message-passing belief propagation method for re-weighting lower compatible graphs in the training process and further smooth local feature discrepancies. Extensive experimental results over five public size-imbalanced datasets demonstrate the superior effectiveness of the model for size-imbalanced graph classification tasks.
DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models
Yuan, Haonan, Sun, Qingyun, Wang, Zhaonan, Fu, Xingcheng, Ji, Cheng, Wang, Yongjian, Jin, Bo, Li, Jianxin
Dynamic graphs exhibit intertwined spatio-temporal evolutionary patterns, widely existing in the real world. Nevertheless, the structure incompleteness, noise, and redundancy result in poor robustness for Dynamic Graph Neural Networks (DGNNs). Dynamic Graph Structure Learning (DGSL) offers a promising way to optimize graph structures. However, aside from encountering unacceptable quadratic complexity, it overly relies on heuristic priors, making it hard to discover underlying predictive patterns. How to efficiently refine the dynamic structures, capture intrinsic dependencies, and learn robust representations, remains under-explored. In this work, we propose the novel DG-Mamba, a robust and efficient Dynamic Graph structure learning framework with the Selective State Space Models (Mamba). To accelerate the spatio-temporal structure learning, we propose a kernelized dynamic message-passing operator that reduces the quadratic time complexity to linear. To capture global intrinsic dynamics, we establish the dynamic graph as a self-contained system with State Space Model. By discretizing the system states with the cross-snapshot graph adjacency, we enable the long-distance dependencies capturing with the selective snapshot scan. To endow learned dynamic structures more expressive with informativeness, we propose the self-supervised Principle of Relevant Information for DGSL to regularize the most relevant yet least redundant information, enhancing global robustness. Extensive experiments demonstrate the superiority of the robustness and efficiency of our DG-Mamba compared with the state-of-the-art baselines against adversarial attacks.