Li, Jiaming
MITracker: Multi-View Integration for Visual Object Tracking
Xu, Mengjie, Zhu, Yitao, Jiang, Haotian, Li, Jiaming, Shen, Zhenrong, Wang, Sheng, Huang, Haolin, Wang, Xinyu, Yang, Qing, Zhang, Han, Wang, Qian
Multi-view object tracking (MVOT) offers promising solutions to challenges such as occlusion and target loss, which are common in traditional single-view tracking. However, progress has been limited by the lack of comprehensive multi-view datasets and effective cross-view integration methods. To overcome these limitations, we compiled a Multi-View object Tracking (MVTrack) dataset of 234K high-quality annotated frames featuring 27 distinct objects across various scenes. In conjunction with this dataset, we introduce a novel MVOT method, Multi-View Integration Tracker (MITracker), to efficiently integrate multi-view object features and provide stable tracking outcomes. MITracker can track any object in video frames of arbitrary length from arbitrary viewpoints. The key advancements of our method over traditional single-view approaches come from two aspects: (1) MITracker transforms 2D image features into a 3D feature volume and compresses it into a bird's eye view (BEV) plane, facilitating inter-view information fusion; (2) we propose an attention mechanism that leverages geometric information from fused 3D feature volume to refine the tracking results at each view. MITracker outperforms existing methods on the MVTrack and GMTD datasets, achieving state-of-the-art performance. The code and the new dataset will be available at https://mii-laboratory.github.io/MITracker/.
OpenOmni: Large Language Models Pivot Zero-shot Omnimodal Alignment across Language with Real-time Self-Aware Emotional Speech Synthesis
Luo, Run, Lin, Ting-En, Zhang, Haonan, Wu, Yuchuan, Liu, Xiong, Yang, Min, Li, Yongbin, Chen, Longze, Li, Jiaming, Zhang, Lei, Chen, Yangyi, Alinejad-Rokny, Hamid, Huang, Fei
Recent advancements in omnimodal learning have been achieved in understanding and generation across images, text, and speech, though mainly within proprietary models. Limited omnimodal datasets and the inherent challenges associated with real-time emotional speech generation have hindered open-source progress. To address these issues, we propose openomni, a two-stage training method combining omnimodal alignment and speech generation to develop a state-of-the-art omnimodal large language model. In the alignment phase, a pre-trained speech model is further trained on text-image tasks to generalize from vision to speech in a (near) zero-shot manner, outperforming models trained on tri-modal datasets. In the speech generation phase, a lightweight decoder facilitates real-time emotional speech through training on speech tasks and preference learning. Experiments demonstrate that openomni consistently improves across omnimodal, vision-language, and speech-language evaluations, enabling natural, emotion-rich dialogues and real-time emotional speech generation.
Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding
Li, Jiaming, Zhang, Jiacheng, Jie, Zequn, Ma, Lin, Li, Guanbin
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks. Despite their success, LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content. To address this issue, some approaches have introduced inference-time interventions, such as contrastive decoding and attention rectification, to reduce overreliance on language priors. However, these approaches overlook hallucinations stemming from spurious inter-modality correlations. In this paper, we propose an Inter-Modality Correlation Calibration Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner. In this method, we design a Cross-Modal Value-Enhanced Decoding(CMVED) module to alleviate hallucination by a novel contrastive decoding mechanism. During the estimation of distorted distribution, CMVED masks the value vectors associated with significant cross-modal attention weights, which address both uni-modality overreliance and misleading inter-modality correlations. Additionally, a Content-Driven Attention Refinement(CDAR) module refines cross-modal attention weights, guiding LVLMs to focus on important visual content. Experimental results on diverse hallucination benchmarks validate the superiority of our method over existing state-of-the-art techniques in reducing hallucinations in LVLM text generation. Our code will be available at https://github.com/lijm48/IMCCD.
Benchmarking Large Language Models for Image Classification of Marine Mammals
Qi, Yijiashun, Cai, Shuzhang, Zhao, Zunduo, Li, Jiaming, Lin, Yanbin, Wang, Zhiqiang
As Artificial Intelligence (AI) has developed rapidly over the past few decades, the new generation of AI, Large Language Models (LLMs) trained on massive datasets, has achieved ground-breaking performance in many applications. Further progress has been made in multimodal LLMs, with many datasets created to evaluate LLMs with vision abilities. However, none of those datasets focuses solely on marine mammals, which are indispensable for ecological equilibrium. In this work, we build a benchmark dataset with 1,423 images of 65 kinds of marine mammals, where each animal is uniquely classified into different levels of class, ranging from species-level to medium-level to group-level. Moreover, we evaluate several approaches for classifying these marine mammals: (1) machine learning (ML) algorithms using embeddings provided by neural networks, (2) influential pre-trained neural networks, (3) zero-shot models: CLIP and LLMs, and (4) a novel LLM-based multi-agent system (MAS). The results demonstrate the strengths of traditional models and LLMs in different aspects, and the MAS can further improve the classification performance. The dataset is available on GitHub: https://github.com/yeyimilk/LLM-Vision-Marine-Animals.git.
PersonaMath: Enhancing Math Reasoning through Persona-Driven Data Augmentation
Luo, Jing, Luo, Run, Chen, Longze, Zhu, Liang, Ao, Chang, Li, Jiaming, Chen, Yukun, Cheng, Xin, Yang, Wen, Su, Jiayuan, Li, Chengming, Yang, Min
While closed-source Large Language Models (LLMs) demonstrate strong mathematical problem-solving abilities, open-source models continue to struggle with such tasks. To bridge this gap, we propose a data augmentation approach and introduce PersonaMathQA, a dataset derived from MATH and GSM8K, on which we train the PersonaMath models. Our approach consists of two stages: the first stage is learning from Persona Diversification, and the second stage is learning from Reflection. In the first stage, we regenerate detailed chain-of-thought (CoT) solutions as instructions using a closed-source LLM and introduce a novel personadriven data augmentation technique to enhance the dataset's quantity and diversity. In the second stage, we incorporate reflection to fully leverage more challenging and valuable questions. Evaluation of our PersonaMath models on MATH and GSM8K reveals that the PersonaMath-7B model (based on LLaMA-2-7B) achieves an accuracy of 24.2% on MATH and 68.7% on GSM8K, surpassing all baseline methods and achieving state-of-the-art performance. Notably, our dataset contains only 70.3K data points--merely 17.8% of MetaMathQA and 27% of MathInstruct--yet our model outperforms these baselines, demonstrating the high quality and diversity of our dataset, which enables more efficient model training. "There are a thousand Hamlets in a thousand people's eyes" Among these tasks, solving math problems stands out as particularly challenging due to its complexity and the requirement for multi-step reasoning to reach a solution. While some closed-source models, such as GPT-4o (OpenAI, 2024a), Claude 3.5 Sonnet (Anthropic, 2024), and Gemini 1.5 Pro (Reid et al., 2024), have demonstrated strong math-solving capabilities, current open-source models (e.g., LLaMA (Touvron et al., 2023; Dubey et al., 2024)) continue to struggle in this area. Therefore, enhancing the math problem-solving abilities of open-source models is a prominent desiderata. A widely adopted and effective approach for improving the math-solving capabilities of open-source models is fine-tuning, owing to the accessibility of their weights (Yuan et al., 2023; Yue et al., 2023; The method consists of two stages: Stage 1 (top) and Stage 2 (bottom). Stage 1 focuses on using closed-source LLMs to automatically generate detailed CoT solutions and apply our persona-driven rewriting method to rephrase the questions.
Ruler: A Model-Agnostic Method to Control Generated Length for Large Language Models
Li, Jiaming, Zhang, Lei, Li, Yunshui, Liu, Ziqiang, bai, yuelin, Luo, Run, Chen, Longze, Yang, Min
The instruction-following ability of large language models enables humans to interact with AI agents in a natural way. However, when required to generate responses of a specific length, large language models often struggle to meet users' needs due to their inherent difficulty in accurately perceiving numerical constraints. To explore the ability of large language models to control the length of generated responses, we propose the Target Length Generation Task (TLG) and design two metrics, Precise Match (PM) and Flexible Match (FM) to evaluate the model's performance in adhering to specified response lengths. Furthermore, we introduce a novel, model-agnostic approach called Ruler, which employs Meta Length Tokens (MLTs) to enhance the instruction-following ability of large language models under length-constrained instructions. Specifically, Ruler equips LLMs with the ability to generate responses of a specified length based on length constraints within the instructions. Moreover, Ruler can automatically generate appropriate MLT when length constraints are not explicitly provided, demonstrating excellent versatility and generalization. Comprehensive experiments show the effectiveness of Ruler across different LLMs on Target Length Generation Task, e.g., at All Level 27.97 average gain on PM, 29.57 average gain on FM. In addition, we conduct extensive ablation experiments to further substantiate the efficacy and generalization of Ruler. Our code and data is available at https://github.com/Geaming2002/Ruler.
II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models
Liu, Ziqiang, Fang, Feiteng, Feng, Xi, Du, Xinrun, Zhang, Chenhao, Wang, Zekun, Bai, Yuelin, Zhao, Qixuan, Fan, Liyang, Gan, Chengguang, Lin, Hongquan, Li, Jiaming, Ni, Yuansheng, Wu, Haihong, Narsupalli, Yaswanth, Zheng, Zhigang, Li, Chengming, Hu, Xiping, Xu, Ruifeng, Chen, Xiaojun, Yang, Min, Liu, Jiaheng, Liu, Ruibo, Huang, Wenhao, Zhang, Ge, Ni, Shiwen
The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks. In response, numerous challenging and comprehensive benchmarks have been proposed to more accurately assess the capabilities of MLLMs. However, there is a dearth of exploration of the higher-order perceptual capabilities of MLLMs. To fill this gap, we propose the Image Implication understanding Benchmark, II-Bench, which aims to evaluate the model's higher-order perception of images. Through extensive experiments on II-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on II-Bench. The pinnacle accuracy of MLLMs attains 74.8%, whereas human accuracy averages 90%, peaking at an impressive 98%. Subsequently, MLLMs perform worse on abstract and complex images, suggesting limitations in their ability to understand high-level semantics and capture image details. Finally, it is observed that most models exhibit enhanced accuracy when image sentiment polarity hints are incorporated into the prompts. This observation underscores a notable deficiency in their inherent understanding of image sentiment. We believe that II-Bench will inspire the community to develop the next generation of MLLMs, advancing the journey towards expert artificial general intelligence (AGI). II-Bench is publicly available at https://huggingface.co/datasets/m-a-p/II-Bench.
Instruction-Guided Visual Masking
Zheng, Jinliang, Li, Jianxiong, Cheng, Sijie, Zheng, Yinan, Li, Jiaming, Liu, Jihao, Liu, Yu, Liu, Jingjing, Zhan, Xianyuan
Instruction following is crucial in contemporary LLM. However, when extended to multimodal setting, it often suffers from misalignment between specific textual instruction and targeted local region of an image. To achieve more accurate and nuanced multimodal instruction following, we introduce Instruction-guided Visual Masking (IVM), a new versatile visual grounding model that is compatible with diverse multimodal models, such as LMM and robot model. By constructing visual masks for instruction-irrelevant regions, IVM-enhanced multimodal models can effectively focus on task-relevant image regions to better align with complex instructions. Specifically, we design a visual masking data generation pipeline and create an IVM-Mix-1M dataset with 1 million image-instruction pairs. We further introduce a new learning technique, Discriminator Weighted Supervised Learning (DWSL) for preferential IVM training that prioritizes high-quality data samples. Experimental results on generic multimodal tasks such as VQA and embodied robotic control demonstrate the versatility of IVM, which as a plug-and-play tool, significantly boosts the performance of diverse multimodal models, yielding new state-of-the-art results across challenging multimodal benchmarks. Code is available at https://github.com/2toinf/IVM.
DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection
Sun, Yuhao, Yu, Lingyun, Xie, Hongtao, Li, Jiaming, Zhang, Yongdong
With the rapid development of face recognition (FR) systems, the privacy of face images on social media is facing severe challenges due to the abuse of unauthorized FR systems. Some studies utilize adversarial attack techniques to defend against malicious FR systems by generating adversarial examples. However, the generated adversarial examples, i.e., the protected face images, tend to suffer from subpar visual quality and low transferability. In this paper, we propose a novel face protection approach, dubbed DiffAM, which leverages the powerful generative ability of diffusion models to generate high-quality protected face images with adversarial makeup transferred from reference images. To be specific, we first introduce a makeup removal module to generate non-makeup images utilizing a fine-tuned diffusion model with guidance of textual prompts in CLIP space. As the inverse process of makeup transfer, makeup removal can make it easier to establish the deterministic relationship between makeup domain and non-makeup domain regardless of elaborate text prompts. Then, with this relationship, a CLIP-based makeup loss along with an ensemble attack strategy is introduced to jointly guide the direction of adversarial makeup domain, achieving the generation of protected face images with natural-looking makeup and high black-box transferability. Extensive experiments demonstrate that DiffAM achieves higher visual quality and attack success rates with a gain of 12.98% under black-box setting compared with the state of the arts. The code will be available at https://github.com/HansSunY/DiffAM.