Li, Jiachen
VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Jia, Yiming, Li, Jiachen, Yue, Xiang, Li, Bo, Nie, Ping, Zou, Kai, Chen, Wenhu
Vision-Language Models have made significant progress on many perception-focused tasks. However, their progress on reasoning-focused tasks remains limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity of reasoning-focused multimodal datasets. We propose VisualWebInstruct, a novel approach that leverages search engines to create a diverse and high-quality dataset spanning multiple disciplines, including mathematics, physics, finance, and chemistry, etc. Starting with a meticulously selected set of 30,000 seed images, we employ Google Image Search to identify websites containing similar images. We collect and process HTML data from over 700K unique URLs. Through a pipeline of content extraction, filtering, and synthesis, we construct a dataset of approximately 900K question-answer (QA) pairs, with 40% consisting of visual QA pairs and the remaining comprising text-based QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance improvements: (1) fine-tuning on Llava-OV results in 10-20 absolute points improvement across benchmarks, and (2) fine-tuning from MAmmoTH-VL yields a 5 absolute points gain across benchmarks. Our best model, MAmmoTH-VL2, achieves state-of-the-art performance within the 10B parameter class on MMMU-Pro (40.7), MathVerse (42.6), and DynaMath (55.7). These results highlight the effectiveness of our dataset in enhancing the reasoning capabilities of vision-language models for complex multimodal tasks.
Adaptive Backdoor Attacks with Reasonable Constraints on Graph Neural Networks
Dong, Xuewen, Li, Jiachen, Li, Shujun, You, Zhichao, Qu, Qiang, Kholodov, Yaroslav, Shen, Yulong
Recent studies show that graph neural networks (GNNs) are vulnerable to backdoor attacks. Existing backdoor attacks against GNNs use fixed-pattern triggers and lack reasonable trigger constraints, overlooking individual graph characteristics and rendering insufficient evasiveness. To tackle the above issues, we propose ABARC, the first Adaptive Backdoor Attack with Reasonable Constraints, applying to both graph-level and node-level tasks in GNNs. For graph-level tasks, we propose a subgraph backdoor attack independent of the graph's topology. It dynamically selects trigger nodes for each target graph and modifies node features with constraints based on graph similarity, feature range, and feature type. For node-level tasks, our attack begins with an analysis of node features, followed by selecting and modifying trigger features, which are then constrained by node similarity, feature range, and feature type. Furthermore, an adaptive edge-pruning mechanism is designed to reduce the impact of neighbors on target nodes, ensuring a high attack success rate (ASR). Experimental results show that even with reasonable constraints for attack evasiveness, our attack achieves a high ASR while incurring a marginal clean accuracy drop (CAD). When combined with the state-of-the-art defense randomized smoothing (RS) method, our attack maintains an ASR over 94%, surpassing existing attacks by more than 7%.
Human Implicit Preference-Based Policy Fine-tuning for Multi-Agent Reinforcement Learning in USV Swarm
Kim, Hyeonjun, Lee, Kanghoon, Park, Junho, Li, Jiachen, Park, Jinkyoo
Multi-Agent Reinforcement Learning (MARL) has shown promise in solving complex problems involving cooperation and competition among agents, such as an Unmanned Surface Vehicle (USV) swarm used in search and rescue, surveillance, and vessel protection. However, aligning system behavior with user preferences is challenging due to the difficulty of encoding expert intuition into reward functions. To address the issue, we propose a Reinforcement Learning with Human Feedback (RLHF) approach for MARL that resolves credit-assignment challenges through an Agent-Level Feedback system categorizing feedback into intra-agent, inter-agent, and intra-team types. To overcome the challenges of direct human feedback, we employ a Large Language Model (LLM) evaluator to validate our approach using feedback scenarios such as region constraints, collision avoidance, and task allocation. Our method effectively refines USV swarm policies, addressing key challenges in multi-agent systems while maintaining fairness and performance consistency.
Preference VLM: Leveraging VLMs for Scalable Preference-Based Reinforcement Learning
Ghosh, Udita, Raychaudhuri, Dripta S., Li, Jiachen, Karydis, Konstantinos, Roy-Chowdhury, Amit
Preference-based reinforcement learning (RL) offers a promising approach for aligning policies with human intent but is often constrained by the high cost of human feedback. In this work, we introduce PrefVLM, a framework that integrates Vision-Language Models (VLMs) with selective human feedback to significantly reduce annotation requirements while maintaining performance. Our method leverages VLMs to generate initial preference labels, which are then filtered to identify uncertain cases for targeted human annotation. Additionally, we adapt VLMs using a self-supervised inverse dynamics loss to improve alignment with evolving policies. Experiments on Meta-World manipulation tasks demonstrate that PrefVLM achieves comparable or superior success rates to state-of-the-art methods while using up to 2 x fewer human annotations. Furthermore, we show that adapted VLMs enable efficient knowledge transfer across tasks, further minimizing feedback needs. Our results highlight the potential of combining VLMs with selective human supervision to make preference-based RL more scalable and practical.
STAMP: Scalable Task And Model-agnostic Collaborative Perception
Gao, Xiangbo, Xu, Runsheng, Li, Jiachen, Wang, Ziran, Fan, Zhiwen, Tu, Zhengzhong
Perception is a crucial component of autonomous driving systems. However, single-agent setups often face limitations due to sensor constraints, especially under challenging conditions like severe occlusion, adverse weather, and long-range object detection. Multi-agent collaborative perception (CP) offers a promising solution that enables communication and information sharing between connected vehicles. Yet, the heterogeneity among agents--in terms of sensors, models, and tasks--significantly hinders effective and efficient cross-agent collaboration. To address these challenges, we propose STAMP, a scalable task-and model-agnostic collaborative perception framework tailored for heterogeneous agents. STAMP utilizes lightweight adapter-reverter pairs to transform Bird's Eye View (BEV) features between agent-specific domains and a shared protocol domain, facilitating efficient feature sharing and fusion while minimizing computational overhead. Moreover, our approach enhances scalability, preserves model security, and accommodates a diverse range of agents. Extensive experiments on both simulated (OPV2V) and real-world (V2V4Real) datasets demonstrate that STAMP achieves comparable or superior accuracy to state-of-the-art models with significantly reduced computational costs. As the first-of-its-kind task-and model-agnostic collaborative perception framework, STAMP aims to advance research in scalable and secure mobility systems, bringing us closer to Level 5 autonomy. Our project page is at https://xiangbogaobarry.github.io/STAMP Multi-agent collaborative perception (CP) (Bai et al., 2022b; Han et al., 2023; Liu et al., 2023) has emerged as a promising solution for autonomous systems by leveraging communication among multiple connected and automated agents. It enables agents--such as vehicles, infrastructure, or even pedestrians--to share sensory and perceptual information, providing a more comprehensive view of the surrounding environment to enhance overall perception capabilities. Despite its potential, CP faces significant challenges, particularly when dealing with heterogeneous agents that defer in input modalities, model parameters, architectures, or learning objectives.
VidFormer: A novel end-to-end framework fused by 3DCNN and Transformer for Video-based Remote Physiological Measurement
Li, Jiachen, Guo, Shisheng, Tang, Longzhen, Cui, Cuolong, Kong, Lingjiang, Yang, Xiaobo
Remote physiological signal measurement based on facial videos, also known as remote photoplethysmography (rPPG), involves predicting changes in facial vascular blood flow from facial videos. While most deep learning-based methods have achieved good results, they often struggle to balance performance across small and large-scale datasets due to the inherent limitations of convolutional neural networks (CNNs) and Transformer. In this paper, we introduce VidFormer, a novel end-to-end framework that integrates 3-Dimension Convolutional Neural Network (3DCNN) and Transformer models for rPPG tasks. Initially, we conduct an analysis of the traditional skin reflection model and subsequently introduce an enhanced model for the reconstruction of rPPG signals. Based on this improved model, VidFormer utilizes 3DCNN and Transformer to extract local and global features from input data, respectively. To enhance the spatiotemporal feature extraction capabilities of VidFormer, we incorporate temporal-spatial attention mechanisms tailored for both 3DCNN and Transformer. Additionally, we design a module to facilitate information exchange and fusion between the 3DCNN and Transformer. Our evaluation on five publicly available datasets demonstrates that VidFormer outperforms current state-of-the-art (SOTA) methods. Finally, we discuss the essential roles of each VidFormer module and examine the effects of ethnicity, makeup, and exercise on its performance.
Robust Offline Imitation Learning from Diverse Auxiliary Data
Ghosh, Udita, Raychaudhuri, Dripta S., Li, Jiachen, Karydis, Konstantinos, Roy-Chowdhury, Amit K.
Offline imitation learning enables learning a policy solely from a set of expert demonstrations, without any environment interaction. To alleviate the issue of distribution shift arising due to the small amount of expert data, recent works incorporate large numbers of auxiliary demonstrations alongside the expert data. However, the performance of these approaches rely on assumptions about the quality and composition of the auxiliary data. However, they are rarely successful when those assumptions do not hold. To address this limitation, we propose Robust Offline Imitation from Diverse Auxiliary Data (ROIDA). ROIDA first identifies high-quality transitions from the entire auxiliary dataset using a learned reward function. These high-reward samples are combined with the expert demonstrations for weighted behavioral cloning. For lower-quality samples, ROIDA applies temporal difference learning to steer the policy towards high-reward states, improving long-term returns. This two-pronged approach enables our framework to effectively leverage both high and low-quality data without any assumptions. Extensive experiments validate that ROIDA achieves robust and consistent performance across multiple auxiliary datasets with diverse ratios of expert and non-expert demonstrations. ROIDA effectively leverages unlabeled auxiliary data, outperforming prior methods reliant on specific data assumptions.
Imputation Matters: A Deeper Look into an Overlooked Step in Longitudinal Health and Behavior Sensing Research
Choube, Akshat, Majethia, Rahul, Bhattacharya, Sohini, Swain, Vedant Das, Li, Jiachen, Mishra, Varun
Longitudinal passive sensing studies for health and behavior outcomes often have missing and incomplete data. Handling missing data effectively is thus a critical data processing and modeling step. Our formative interviews with researchers working in longitudinal health and behavior passive sensing revealed a recurring theme: most researchers consider imputation a low-priority step in their analysis and inference pipeline, opting to use simple and off-the-shelf imputation strategies without comprehensively evaluating its impact on study outcomes. Through this paper, we call attention to the importance of imputation. Using publicly available passive sensing datasets for depression, we show that prioritizing imputation can significantly impact the study outcomes -- with our proposed imputation strategies resulting in up to 31% improvement in AUROC to predict depression over the original imputation strategy. We conclude by discussing the challenges and opportunities with effective imputation in longitudinal sensing studies.
Vital Insight: Assisting Experts' Sensemaking Process of Multi-modal Personal Tracking Data Using Visualization and LLM
Li, Jiachen, Steinberg, Justin, Li, Xiwen, Choube, Akshat, Yao, Bingsheng, Wang, Dakuo, Mynatt, Elizabeth, Mishra, Varun
Researchers have long recognized the socio-technical gaps in personal tracking research, where machines can never fully model the complexity of human behavior, making it only able to produce basic rule-based outputs or "black-box" results that lack clear explanations. Real-world deployments rely on experts for this complex translation from sparse data to meaningful insights. In this study, we consider this translation process from data to insights by experts as "sensemaking" and explore how HCI researchers can support it through Vital Insight, an evidence-based 'sensemaking' system that combines direct representation and indirect inference through visualization and Large Language Models. We evaluate Vital Insight in user testing sessions with 14 experts in multi-modal tracking, synthesize design implications, and develop an expert sensemaking model where they iteratively move between direct data representations and AI-supported inferences to explore, retrieve, question, and validate insights.
T2V-Turbo-v2: Enhancing Video Generation Model Post-Training through Data, Reward, and Conditional Guidance Design
Li, Jiachen, Long, Qian, Zheng, Jian, Gao, Xiaofeng, Piramuthu, Robinson, Chen, Wenhu, Wang, William Yang
In this paper, we focus on enhancing a diffusion-based text-to-video (T2V) model during the post-training phase by distilling a highly capable consistency model from a pretrained T2V model. Our proposed method, T2V-Turbo-v2, introduces a significant advancement by integrating various supervision signals, including high-quality training data, reward model feedback, and conditional guidance, into the consistency distillation process. Through comprehensive ablation studies, we highlight the crucial importance of tailoring datasets to specific learning objectives and the effectiveness of learning from diverse reward models for enhancing both the visual quality and text-video alignment. Additionally, we highlight the vast design space of conditional guidance strategies, which centers on designing an effective energy function to augment the teacher ODE solver. We demonstrate the potential of this approach by extracting motion guidance from the training datasets and incorporating it into the ODE solver, showcasing its effectiveness in improving the motion quality of the generated videos with the improved motion-related metrics from VBench and T2V-CompBench. Empirically, our T2V-Turbo-v2 establishes a new state-of-the-art result on VBench, with a Total score of 85.13, surpassing proprietary systems such as Gen-3 and Kling.