Li, Haoxuan
Empowering LLMs with Logical Reasoning: A Comprehensive Survey
Cheng, Fengxiang, Li, Haoxuan, Liu, Fenrong, van Rooij, Robert, Zhang, Kun, Lin, Zhouchen
Large language models (LLMs) have achieved remarkable successes on various natural language tasks. However, recent studies have found that there are still significant challenges to the logical reasoning abilities of LLMs. This paper summarizes and categorizes the main challenges into two aspects: (1) Logical question answering, LLMs often fail to generate the correct answer within complex logical problem which requires sophisticated deductive, inductive or abductive reasoning given a collection of premises and constrains. (2) Logical consistency, LLMs are prone to producing responses contradicting themselves across different questions. For example, a state-of-the-art Macaw question-answering LLM answers Yes to both questions Is a magpie a bird? and Does a bird have wings? but answers No to Does a magpie have wings?. To facilitate this research direction, we comprehensively investigate the most cutting-edge methods and propose detailed taxonomies of these methods. Specifically, to accurately answer complex logic questions, previous methods can be categorized based on reliance on external solvers, prompts, pretraining, and fine-tuning. To avoid logical contradictions, we discuss concepts and solutions of various logical consistencies, including implication, negation, transitivity, factuality consistency, and their composites. In addition, we review commonly used benchmark datasets and evaluation metrics, and discuss promising research directions, such as extensions to modal logic to account for uncertainty, and efficient algorithms satisfying multiple logical consistencies simultaneously.
Exploring LLM-based Student Simulation for Metacognitive Cultivation
Li, Haoxuan, Yu, Jifan, Cong, Xin, Dang, Yang, Zhan, Yisi, Liu, Huiqin, Liu, Zhiyuan
Metacognitive education plays a crucial role in cultivating students' self-regulation and reflective thinking, providing essential support for those with learning difficulties through academic advising. Simulating students with insufficient learning capabilities using large language models offers a promising approach to refining pedagogical methods without ethical concerns. However, existing simulations often fail to authentically represent students' learning struggles and face challenges in evaluation due to the lack of reliable metrics and ethical constraints in data collection. To address these issues, we propose a pipeline for automatically generating and filtering high-quality simulated student agents. Our approach leverages a two-round automated scoring system validated by human experts and employs a score propagation module to obtain more consistent scores across the student graph. Experimental results demonstrate that our pipeline efficiently identifies high-quality student agents, and we discuss the traits that influence the simulation's effectiveness. By simulating students with varying degrees of learning difficulties, our work paves the way for broader applications in personalized learning and educational assessment.
Learning Counterfactual Outcomes Under Rank Preservation
Wu, Peng, Li, Haoxuan, Zheng, Chunyuan, Zeng, Yan, Chen, Jiawei, Liu, Yang, Guo, Ruocheng, Zhang, Kun
Counterfactual inference aims to estimate the counterfactual outcome at the individual level given knowledge of an observed treatment and the factual outcome, with broad applications in fields such as epidemiology, econometrics, and management science. Previous methods rely on a known structural causal model (SCM) or assume the homogeneity of the exogenous variable and strict monotonicity between the outcome and exogenous variable. In this paper, we propose a principled approach for identifying and estimating the counterfactual outcome. We first introduce a simple and intuitive rank preservation assumption to identify the counterfactual outcome without relying on a known structural causal model. Building on this, we propose a novel ideal loss for theoretically unbiased learning of the counterfactual outcome and further develop a kernel-based estimator for its empirical estimation. Our theoretical analysis shows that the rank preservation assumption is not stronger than the homogeneity and strict monotonicity assumptions, and shows that the proposed ideal loss is convex, and the proposed estimator is unbiased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed method.
Decomposing and Fusing Intra- and Inter-Sensor Spatio-Temporal Signal for Multi-Sensor Wearable Human Activity Recognition
Xie, Haoyu, Li, Haoxuan, Zheng, Chunyuan, Yuan, Haonan, Liao, Guorui, Liao, Jun, Liu, Li
Wearable Human Activity Recognition (WHAR) is a prominent research area within ubiquitous computing. Multi-sensor synchronous measurement has proven to be more effective for WHAR than using a single sensor. However, existing WHAR methods use shared convolutional kernels for indiscriminate temporal feature extraction across each sensor variable, which fails to effectively capture spatio-temporal relationships of intra-sensor and inter-sensor variables. We propose the DecomposeWHAR model consisting of a decomposition phase and a fusion phase to better model the relationships between modality variables. The decomposition creates high-dimensional representations of each intra-sensor variable through the improved Depth Separable Convolution to capture local temporal features while preserving their unique characteristics. The fusion phase begins by capturing relationships between intra-sensor variables and fusing their features at both the channel and variable levels. Long-range temporal dependencies are modeled using the State Space Model (SSM), and later cross-sensor interactions are dynamically captured through a self-attention mechanism, highlighting inter-sensor spatial correlations. Our model demonstrates superior performance on three widely used WHAR datasets, significantly outperforming state-of-the-art models while maintaining acceptable computational efficiency. Our codes and supplementary materials are available at https://github.com/Anakin2555/DecomposeWHAR.
Towards Understanding Extrapolation: a Causal Lens
Kong, Lingjing, Chen, Guangyi, Stojanov, Petar, Li, Haoxuan, Xing, Eric P., Zhang, Kun
However, practical scenarios often involve only a handful of target samples, potentially lying outside the training support, which requires the capability of extrapolation. In this work, we aim to provide a theoretical understanding of when extrapolation is possible and offer principled methods to achieve it without requiring an on-support target distribution. To this end, we formulate the extrapolation problem with a latent-variable model that embodies the minimal change principle in causal mechanisms. Under this formulation, we cast the extrapolation problem into a latent-variable identification problem. We provide realistic conditions on shift properties and the estimation objectives that lead to identification even when only one off-support target sample is available, tackling the most challenging scenarios. Our theory reveals the intricate interplay between the underlying manifold's smoothness and the shift properties. We showcase how our theoretical results inform the design of practical adaptation algorithms.
A Two-Stage Pretraining-Finetuning Framework for Treatment Effect Estimation with Unmeasured Confounding
Zhou, Chuan, Li, Yaxuan, Zheng, Chunyuan, Zhang, Haiteng, Zhang, Min, Li, Haoxuan, Gong, Mingming
Estimating the conditional average treatment effect (CATE) from observational data plays a crucial role in areas such as e-commerce, healthcare, and economics. Existing studies mainly rely on the strong ignorability assumption that there are no unmeasured confounders, whose presence cannot be tested from observational data and can invalidate any causal conclusion. In contrast, data collected from randomized controlled trials (RCT) do not suffer from confounding, but are usually limited by a small sample size. In this paper, we propose a two-stage pretraining-finetuning (TSPF) framework using both large-scale observational data and small-scale RCT data to estimate the CATE in the presence of unmeasured confounding. In the first stage, a foundational representation of covariates is trained to estimate counterfactual outcomes through large-scale observational data. In the second stage, we propose to train an augmented representation of the covariates, which is concatenated to the foundational representation obtained in the first stage to adjust for the unmeasured confounding. To avoid overfitting caused by the small-scale RCT data in the second stage, we further propose a partial parameter initialization approach, rather than training a separate network. The superiority of our approach is validated on two public datasets with extensive experiments. The code is available at https://github.com/zhouchuanCN/KDD25-TSPF.
CharacterBox: Evaluating the Role-Playing Capabilities of LLMs in Text-Based Virtual Worlds
Wang, Lei, Lian, Jianxun, Huang, Yi, Dai, Yanqi, Li, Haoxuan, Chen, Xu, Xie, Xing, Wen, Ji-Rong
Role-playing is a crucial capability of Large Language Models (LLMs), enabling a wide range of practical applications, including intelligent non-player characters, digital twins, and emotional companions. Evaluating this capability in LLMs is challenging due to the complex dynamics involved in role-playing, such as maintaining character fidelity throughout a storyline and navigating open-ended narratives without a definitive ground truth. Current evaluation methods, which primarily focus on question-answering or conversational snapshots, fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing. In this paper, we propose CharacterBox, which is a simulation sandbox designed to generate situational fine-grained character behavior trajectories. These behavior trajectories enable a more comprehensive and in-depth evaluation of role-playing capabilities. CharacterBox consists of two main components: the character agent and the narrator agent. The character agent, grounded in psychological and behavioral science, exhibits human-like behaviors, while the narrator agent coordinates interactions between character agents and environmental changes. Additionally, we introduce two trajectory-based methods that leverage CharacterBox to enhance LLM performance. To reduce costs and facilitate the adoption of CharacterBox by public communities, we fine-tune two smaller models, CharacterNR and CharacterRM, as substitutes for GPT API calls, and demonstrate their competitive performance compared to advanced GPT APIs.
FSMLP: Modelling Channel Dependencies With Simplex Theory Based Multi-Layer Perceptions In Frequency Domain
Li, Zhengnan, Li, Haoxuan, Wang, Hao, Fang, Jun, Qin, Duoyin Li Yunxiao
Time series forecasting (TSF) plays a crucial role in various domains, including web data analysis, energy consumption prediction, and weather forecasting. While Multi-Layer Perceptrons (MLPs) are lightweight and effective for capturing temporal dependencies, they are prone to overfitting when used to model inter-channel dependencies. In this paper, we investigate the overfitting problem in channel-wise MLPs using Rademacher complexity theory, revealing that extreme values in time series data exacerbate this issue. To mitigate this issue, we introduce a novel Simplex-MLP layer, where the weights are constrained within a standard simplex. This strategy encourages the model to learn simpler patterns and thereby reducing overfitting to extreme values. Based on the Simplex-MLP layer, we propose a novel \textbf{F}requency \textbf{S}implex \textbf{MLP} (FSMLP) framework for time series forecasting, comprising of two kinds of modules: \textbf{S}implex \textbf{C}hannel-\textbf{W}ise MLP (SCWM) and \textbf{F}requency \textbf{T}emporal \textbf{M}LP (FTM). The SCWM effectively leverages the Simplex-MLP to capture inter-channel dependencies, while the FTM is a simple yet efficient temporal MLP designed to extract temporal information from the data. Our theoretical analysis shows that the upper bound of the Rademacher Complexity for Simplex-MLP is lower than that for standard MLPs. Moreover, we validate our proposed method on seven benchmark datasets, demonstrating significant improvements in forecasting accuracy and efficiency, while also showcasing superior scalability. Additionally, we demonstrate that Simplex-MLP can improve other methods that use channel-wise MLP to achieve less overfitting and improved performance. Code are available \href{https://github.com/FMLYD/FSMLP}{\textcolor{red}{here}}.
Proximity Matters: Local Proximity Preserved Balancing for Treatment Effect Estimation
Wang, Hao, Chen, Zhichao, Shen, Yuan, Fan, Jiajun, Liu, Zhaoran, Yang, Degui, Liu, Xinggao, Li, Haoxuan
Heterogeneous treatment effect (HTE) estimation from observational data poses significant challenges due to treatment selection bias. Existing methods address this bias by minimizing distribution discrepancies between treatment groups in latent space, focusing on global alignment. However, the fruitful aspect of local proximity, where similar units exhibit similar outcomes, is often overlooked. In this study, we propose Proximity-aware Counterfactual Regression (PCR) to exploit proximity for representation balancing within the HTE estimation context. Specifically, we introduce a local proximity preservation regularizer based on optimal transport to depict the local proximity in discrepancy calculation. Furthermore, to overcome the curse of dimensionality that renders the estimation of discrepancy ineffective--exacerbated by limited data availability for HTE estimation--we develop an informative subspace projector, which trades off minimal distance precision for improved sample complexity. Extensive experiments demonstrate that PCR accurately matches units across different treatment groups, effectively mitigates treatment selection bias, and significantly outperforms competitors. Code is available at https://anonymous.4open.science/status/ncr-B697.
Debiased Recommendation with Noisy Feedback
Li, Haoxuan, Zheng, Chunyuan, Wang, Wenjie, Wang, Hao, Feng, Fuli, Zhou, Xiao-Hua
Ratings of a user to most items in recommender systems are usually missing not at random (MNAR), largely because users are free to choose which items to rate. To achieve unbiased learning of the prediction model under MNAR data, three typical solutions have been proposed, including error-imputation-based (EIB), inverse-propensity-scoring (IPS), and doubly robust (DR) methods. However, these methods ignore an alternative form of bias caused by the inconsistency between the observed ratings and the users' true preferences, also known as noisy feedback or outcome measurement errors (OME), e.g., due to public opinion or low-quality data collection process. In this work, we study intersectional threats to the unbiased learning of the prediction model from data MNAR and OME in the collected data. First, we design OME-EIB, OME-IPS, and OME-DR estimators, which largely extend the existing estimators to combat OME in real-world recommendation scenarios. Next, we theoretically prove the unbiasedness and generalization bound of the proposed estimators. We further propose an alternate denoising training approach to achieve unbiased learning of the prediction model under MNAR data with OME. Extensive experiments are conducted on three real-world datasets and one semi-synthetic dataset to show the effectiveness of our proposed approaches. The code is available at https://github.com/haoxuanli-pku/KDD24-OME-DR.