Li, Haojie
Is this Generated Person Existed in Real-world? Fine-grained Detecting and Calibrating Abnormal Human-body
Wang, Zeqing, Ma, Qingyang, Wan, Wentao, Li, Haojie, Wang, Keze, Tian, Yonghong
Recent improvements in visual synthesis have significantly enhanced the depiction of generated human photos, which are pivotal due to their wide applicability and demand. Nonetheless, the existing text-to-image or text-to-video models often generate low-quality human photos that might differ considerably from real-world body structures, referred to as "abnormal human bodies". Such abnormalities, typically deemed unacceptable, pose considerable challenges in the detection and repair of them within human photos. These challenges require precise abnormality recognition capabilities, which entail pinpointing both the location and the abnormality type. Intuitively, Visual Language Models (VLMs) that have obtained remarkable performance on various visual tasks are quite suitable for this task. However, their performance on abnormality detection in human photos is quite poor. Hence, it is quite important to highlight this task for the research community. In this paper, we first introduce a simple yet challenging task, i.e., \textbf{F}ine-grained \textbf{H}uman-body \textbf{A}bnormality \textbf{D}etection \textbf{(FHAD)}, and construct two high-quality datasets for evaluation. Then, we propose a meticulous framework, named HumanCalibrator, which identifies and repairs abnormalities in human body structures while preserving the other content. Experiments indicate that our HumanCalibrator achieves high accuracy in abnormality detection and accomplishes an increase in visual comparisons while preserving the other visual content.
Similarity Guided Multimodal Fusion Transformer for Semantic Location Prediction in Social Media
Zhang, Zhizhen, Wang, Ning, Li, Haojie, Wang, Zhihui
Semantic location prediction aims to derive meaningful location insights from multimodal social media posts, offering a more contextual understanding of daily activities than using GPS coordinates. This task faces significant challenges due to the noise and modality heterogeneity in "text-image" posts. Existing methods are generally constrained by inadequate feature representations and modal interaction, struggling to effectively reduce noise and modality heterogeneity. To address these challenges, we propose a Similarity-Guided Multimodal Fusion Transformer (SG-MFT) for predicting the semantic locations of users from their multimodal posts. First, we incorporate high-quality text and image representations by utilizing a pre-trained large vision-language model. Then, we devise a Similarity-Guided Interaction Module (SIM) to alleviate modality heterogeneity and noise interference by incorporating both coarse-grained and fine-grained similarity guidance for improving modality interactions. Specifically, we propose a novel similarity-aware feature interpolation attention mechanism at the coarse-grained level, leveraging modality-wise similarity to mitigate heterogeneity and reduce noise within each modality. At the fine-grained level, we utilize a similarity-aware feed-forward block and element-wise similarity to further address the issue of modality heterogeneity. Finally, building upon pre-processed features with minimal noise and modal interference, we devise a Similarity-aware Fusion Module (SFM) to fuse two modalities with a cross-attention mechanism. Comprehensive experimental results clearly demonstrate the superior performance of our proposed method.
Visual Tuning
Yu, Bruce X. B., Chang, Jianlong, Wang, Haixin, Liu, Lingbo, Wang, Shijie, Wang, Zhiyu, Lin, Junfan, Xie, Lingxi, Li, Haojie, Lin, Zhouchen, Tian, Qi, Chen, Chang Wen
Fine-tuning visual models has been widely shown promising performance on many downstream visual tasks. With the surprising development of pre-trained visual foundation models, visual tuning jumped out of the standard modus operandi that fine-tunes the whole pre-trained model or just the fully connected layer. Instead, recent advances can achieve superior performance than full-tuning the whole pre-trained parameters by updating far fewer parameters, enabling edge devices and downstream applications to reuse the increasingly large foundation models deployed on the cloud. With the aim of helping researchers get the full picture and future directions of visual tuning, this survey characterizes a large and thoughtful selection of recent works, providing a systematic and comprehensive overview of existing work and models. Specifically, it provides a detailed background of visual tuning and categorizes recent visual tuning techniques into five groups: prompt tuning, adapter tuning, parameter tuning, and remapping tuning. Meanwhile, it offers some exciting research directions for prospective pre-training and various interactions in visual tuning.
Rethink Maximum Mean Discrepancy for Domain Adaptation
Wang, Wei, Li, Haojie, Ding, Zhengming, Wang, Zhihui
Existing domain adaptation methods aim to reduce the distributional difference between the source and target domains and respect their specific discriminative information, by establishing the Maximum Mean Discrepancy (MMD) and the discriminative distances. However, they usually accumulate to consider those statistics and deal with their relationships by estimating parameters blindly. This paper theoretically proves two essential facts: 1) minimizing the MMD equals to maximize the source and target intra-class distances respectively but jointly minimize their variance with some implicit weights, so that the feature discriminability degrades; 2) the relationship between the intra-class and inter-class distances is as one falls, another rises. Based on this, we propose a novel discriminative MMD. On one hand, we consider the intra-class and inter-class distances alone to remove a redundant parameter, and the revealed weights provide their approximate optimal ranges. On the other hand, we design two different strategies to boost the feature discriminability: 1) we directly impose a trade-off parameter on the implicit intra-class distance in MMD to regulate its change; 2) we impose the similar weights revealed in MMD on inter-class distance and maximize it, then a balanced factor could be introduced to quantitatively leverage the relative importance between the feature transferability and its discriminability. The experiments on several benchmark datasets not only prove the validity of theoretical results but also demonstrate that our approach could perform better than the comparative state-of-art methods substantially.