Goto

Collaborating Authors

 Li, Hanxi


DART: Depth-Enhanced Accurate and Real-Time Background Matting

arXiv.org Artificial Intelligence

Matting with a static background, often referred to as ``Background Matting" (BGM), has garnered significant attention within the computer vision community due to its pivotal role in various practical applications like webcasting and photo editing. Nevertheless, achieving highly accurate background matting remains a formidable challenge, primarily owing to the limitations inherent in conventional RGB images. These limitations manifest in the form of susceptibility to varying lighting conditions and unforeseen shadows. In this paper, we leverage the rich depth information provided by the RGB-Depth (RGB-D) cameras to enhance background matting performance in real-time, dubbed DART. Firstly, we adapt the original RGB-based BGM algorithm to incorporate depth information. The resulting model's output undergoes refinement through Bayesian inference, incorporating a background depth prior. The posterior prediction is then translated into a "trimap," which is subsequently fed into a state-of-the-art matting algorithm to generate more precise alpha mattes. To ensure real-time matting capabilities, a critical requirement for many real-world applications, we distill the backbone of our model from a larger and more versatile BGM network. Our experiments demonstrate the superior performance of the proposed method. Moreover, thanks to the distillation operation, our method achieves a remarkable processing speed of 33 frames per second (fps) on a mid-range edge-computing device. This high efficiency underscores DART's immense potential for deployment in mobile applications}


On the Dual Formulation of Boosting Algorithms

arXiv.org Artificial Intelligence

We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of AdaBoost, LogitBoost and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance.We also theoretically prove that, approximately, AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column generation based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stage-wise additive boosting algorithms but with much faster convergence rates. Therefore fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.


Totally Corrective Boosting for Regularized Risk Minimization

arXiv.org Artificial Intelligence

Consideration of the primal and dual problems together leads to important new insights into the characteristics of boosting algorithms. In this work, we propose a general framework that can be used to design new boosting algorithms. A wide variety of machine learning problems essentially minimize a regularized risk functional. We show that the proposed boosting framework, termed CGBoost, can accommodate various loss functions and different regularizers in a totally-corrective optimization fashion. We show that, by solving the primal rather than the dual, a large body of totally-corrective boosting algorithms can actually be efficiently solved and no sophisticated convex optimization solvers are needed. We also demonstrate that some boosting algorithms like AdaBoost can be interpreted in our framework--even their optimization is not totally corrective. We empirically show that various boosting algorithms based on the proposed framework perform similarly on the UCIrvine machine learning datasets [1] that we have used in the experiments.