Goto

Collaborating Authors

 Li, Hangyu


Prioritize Denoising Steps on Diffusion Model Preference Alignment via Explicit Denoised Distribution Estimation

arXiv.org Artificial Intelligence

Diffusion models have shown remarkable success in text-to-image generation, making alignment methods for these models increasingly important. A key challenge is the sparsity of preference labels, which are typically available only at the terminal of denoising trajectories. This raises the issue of how to assign credit across denoising steps based on these sparse labels. In this paper, we propose Denoised Distribution Estimation (DDE), a novel method for credit assignment. Unlike previous approaches that rely on auxiliary models or hand-crafted schemes, DDE derives its strategy more explicitly. The proposed DDE directly estimates the terminal denoised distribution from the perspective of each step. It is equipped with two estimation strategies and capable of representing the entire denoising trajectory with a single model inference. Theoretically and empirically, we show that DDE prioritizes optimizing the middle part of the denoising trajectory, resulting in a novel and effective credit assignment scheme. Extensive experiments demonstrate that our approach achieves superior performance, both quantitatively and qualitatively.


A Survey on Self-Evolution of Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications. However, current LLMs that learn from human or external model supervision are costly and may face performance ceilings as task complexity and diversity increase. To address this issue, self-evolution approaches that enable LLM to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing. This new training paradigm inspired by the human experiential learning process offers the potential to scale LLMs towards superintelligence. In this work, we present a comprehensive survey of self-evolution approaches in LLMs. We first propose a conceptual framework for self-evolution and outline the evolving process as iterative cycles composed of four phases: experience acquisition, experience refinement, updating, and evaluation. Second, we categorize the evolution objectives of LLMs and LLM-based agents; then, we summarize the literature and provide taxonomy and insights for each module. Lastly, we pinpoint existing challenges and propose future directions to improve self-evolution frameworks, equipping researchers with critical insights to fast-track the development of self-evolving LLMs. Our corresponding GitHub repository is available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/Awesome-Self-Evolution-of-LLM


API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs

arXiv.org Artificial Intelligence

Recent research has demonstrated that Large Language Models (LLMs) can enhance their capabilities by utilizing external tools. However, three pivotal questions remain unanswered: (1) How effective are current LLMs in utilizing tools? (2) How can we enhance LLMs' ability to utilize tools? (3) What obstacles need to be overcome to leverage tools? To address these questions, we introduce API-Bank, a groundbreaking benchmark, specifically designed for tool-augmented LLMs. For the first question, we develop a runnable evaluation system consisting of 73 API tools. We annotate 314 tool-use dialogues with 753 API calls to assess the existing LLMs' capabilities in planning, retrieving, and calling APIs. For the second question, we construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains. Using this dataset, we train Lynx, a tool-augmented LLM initialized from Alpaca. Experimental results demonstrate that GPT-3.5 exhibits improved tool utilization compared to GPT-3, while GPT-4 excels in planning. However, there is still significant potential for further improvement. Moreover, Lynx surpasses Alpaca's tool utilization performance by more than 26 pts and approaches the effectiveness of GPT-3.5. Through error analysis, we highlight the key challenges for future research in this field to answer the third question.


SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents

arXiv.org Artificial Intelligence

Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken conversation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues.


Self-Explanation Prompting Improves Dialogue Understanding in Large Language Models

arXiv.org Artificial Intelligence

Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs' comprehension in complex dialogue tasks.


On the Robotic Uncertainty of Fully Autonomous Traffic

arXiv.org Artificial Intelligence

Recent transportation research suggests that autonomous vehicles (AVs) have the potential to improve traffic flow efficiency as they are able to maintain smaller car-following distances. Nevertheless, being a unique class of ground robots, AVs are susceptible to robotic errors, particularly in their perception module, leading to uncertainties in their movements and an increased risk of collisions. Consequently, conservative operational strategies, such as larger headway and slower speeds, are implemented to prioritize safety over traffic capacity in real-world operations. To reconcile the inconsistency, this paper proposes an analytical model framework that delineates the endogenous reciprocity between traffic safety and efficiency that arises from robotic uncertainty in AVs. Car-following scenarios are extensively examined, with uncertain headway as the key parameter for bridging the single-lane capacity and the collision probability. A Markov chain is then introduced to describe the dynamics of the lane capacity, and the resulting expected collision-inclusive capacity is adopted as the ultimate performance measure for fully autonomous traffic. With the help of this analytical model, it is possible to support the settings of critical parameters in AV operations and incorporate optimization techniques to assist traffic management strategies for autonomous traffic.


An Empirical Study on Challenging Math Problem Solving with GPT-4

arXiv.org Artificial Intelligence

Employing Large Language Models (LLMs) to address mathematical problems is an intriguing research endeavor, considering the abundance of math problems expressed in natural language across numerous science and engineering fields. While several prior works have investigated solving elementary mathematics using LLMs, this work explores the frontier of using GPT-4 for solving more complex and challenging math problems. We evaluate various ways of using GPT-4. Some of them are adapted from existing work, and one is MathChat, a conversational problem-solving framework newly proposed in this work. We perform the evaluation on difficult high school competition problems from the MATH dataset, which shows the advantage of the proposed conversational approach.


Attention Paper: How Generative AI Reshapes Digital Shadow Industry?

arXiv.org Artificial Intelligence

The rapid development of digital economy has led to the emergence of various black and shadow internet industries, which pose potential risks that can be identified and managed through digital risk management (DRM) that uses different techniques such as machine learning and deep learning. The evolution of DRM architecture has been driven by changes in data forms. However, the development of AI-generated content (AIGC) technology, such as ChatGPT and Stable Diffusion, has given black and shadow industries powerful tools to personalize data and generate realistic images and conversations for fraudulent activities. This poses a challenge for DRM systems to control risks from the source of data generation and to respond quickly to the fast-changing risk environment. This paper aims to provide a technical analysis of the challenges and opportunities of AIGC from upstream, midstream, and downstream paths of black/shadow industries and suggest future directions for improving existing risk control systems. The paper will explore the new black and shadow techniques triggered by generative AI technology and provide insights for building the next-generation DRM system.