Goto

Collaborating Authors

 Li, Guoqiang


Large Language Model guided Deep Reinforcement Learning for Decision Making in Autonomous Driving

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) shows promising potential for autonomous driving decision-making. However, DRL demands extensive computational resources to achieve a qualified policy in complex driving scenarios due to its low learning efficiency. Moreover, leveraging expert guidance from human to enhance DRL performance incurs prohibitively high labor costs, which limits its practical application. In this study, we propose a novel large language model (LLM) guided deep reinforcement learning (LGDRL) framework for addressing the decision-making problem of autonomous vehicles. Within this framework, an LLM-based driving expert is integrated into the DRL to provide intelligent guidance for the learning process of DRL. Subsequently, in order to efficiently utilize the guidance of the LLM expert to enhance the performance of DRL decision-making policies, the learning and interaction process of DRL is enhanced through an innovative expert policy constrained algorithm and a novel LLM-intervened interaction mechanism. Experimental results demonstrate that our method not only achieves superior driving performance with a 90\% task success rate but also significantly improves the learning efficiency and expert guidance utilization efficiency compared to state-of-the-art baseline algorithms. Moreover, the proposed method enables the DRL agent to maintain consistent and reliable performance in the absence of LLM expert guidance. The code and supplementary videos are available at https://bitmobility.github.io/LGDRL/.


Enhancing Automated Loop Invariant Generation for Complex Programs with Large Language Models

arXiv.org Artificial Intelligence

Automated program verification has always been an important component of building trustworthy software. While the analysis of real-world programs remains a theoretical challenge, the automation of loop invariant analysis has effectively resolved the problem. However, real-world programs that often mix complex data structures and control flows pose challenges to traditional loop invariant generation tools. To enhance the applicability of invariant generation techniques, we proposed ACInv, an Automated Complex program loop Invariant generation tool, which combines static analysis with Large Language Models (LLMs) to generate the proper loop invariants. We utilize static analysis to extract the necessary information for each loop and embed it into prompts for the LLM to generate invariants for each loop. Subsequently, we employ an LLM-based evaluator to assess the generated invariants, refining them by either strengthening, weakening, or rejecting them based on their correctness, ultimately obtaining enhanced invariants. We conducted experiments on ACInv, which showed that ACInv outperformed previous tools on data sets with data structures, and maintained similar performance to the state-of-the-art tool AutoSpec on numerical programs without data structures. For the total data set, ACInv can solve 21% more examples than AutoSpec and can generate reference data structure templates.


ARCEAK: An Automated Rule Checking Framework Enhanced with Architectural Knowledge

arXiv.org Artificial Intelligence

Automated Rule Checking (ARC) plays a crucial role in advancing the construction industry by addressing the laborious, inconsistent, and error-prone nature of traditional model review conducted by industry professionals. Manual assessment against intricate sets of rules often leads to significant project delays and expenses. In response to these challenges, ARC offers a promising solution to improve efficiency and compliance in design within the construction sector. However, the main challenge of ARC lies in translating regulatory text into a format suitable for computer processing. Current methods for rule interpretation require extensive manual labor, thereby limiting their practicality. To address this issue, our study introduces a novel approach that decomposes ARC into two distinct tasks: rule information extraction and verification code generation. Leveraging generative pre-trained transformers, our method aims to streamline the interpretation of regulatory texts and simplify the process of generating model compliance checking code. Through empirical evaluation and case studies, we showcase the effectiveness and potential of our approach in automating code compliance checking, enhancing the efficiency and reliability of construction projects.


AC4: Algebraic Computation Checker for Circuit Constraints in ZKPs

arXiv.org Artificial Intelligence

ZKP systems have surged attention and held a fundamental role in contemporary cryptography. Zk-SNARK protocols dominate the ZKP usage, often implemented through arithmetic circuit programming paradigm. However, underconstrained or overconstrained circuits may lead to bugs. Underconstrained circuits refer to circuits that lack the necessary constraints, resulting in unexpected solutions in the circuit and causing the verifier to accept a bogus witness. Overconstrained circuits refer to circuits that are constrained excessively, resulting in the circuit lacking necessary solutions and causing the verifier to accept no witness, rendering the circuit meaningless. This paper introduces a novel approach for pinpointing two distinct types of bugs in ZKP circuits. The method involves encoding the arithmetic circuit constraints to polynomial equation systems and solving polynomial equation systems over a finite field by algebraic computation. The classification of verification results is refined, greatly enhancing the expressive power of the system. We proposed a tool, AC4, to represent the implementation of this method. Experiments demonstrate that AC4 represents a substantial 29% increase in the checked ratio compared to prior work. Within a solvable range, the checking time of AC4 has also exhibited noticeable improvement, demonstrating a magnitude increase compared to previous efforts.


Can Language Models Pretend Solvers? Logic Code Simulation with LLMs

arXiv.org Artificial Intelligence

Transformer-based large language models (LLMs) have demonstrated significant potential in addressing logic problems. capitalizing on the great capabilities of LLMs for code-related activities, several frameworks leveraging logical solvers for logic reasoning have been proposed recently. While existing research predominantly focuses on viewing LLMs as natural language logic solvers or translators, their roles as logic code interpreters and executors have received limited attention. This study delves into a novel aspect, namely logic code simulation, which forces LLMs to emulate logical solvers in predicting the results of logical programs. To further investigate this novel task, we formulate our three research questions: Can LLMs efficiently simulate the outputs of logic codes? What strength arises along with logic code simulation? And what pitfalls? To address these inquiries, we curate three novel datasets tailored for the logic code simulation task and undertake thorough experiments to establish the baseline performance of LLMs in code simulation. Subsequently, we introduce a pioneering LLM-based code simulation technique, Dual Chains of Logic (DCoL). This technique advocates a dual-path thinking approach for LLMs, which has demonstrated state-of-the-art performance compared to other LLM prompt strategies, achieving a notable improvement in accuracy by 7.06% with GPT-4-Turbo.


GPS Attack Detection and Mitigation for Safe Autonomous Driving using Image and Map based Lateral Direction Localization

arXiv.org Artificial Intelligence

The accuracy and robustness of vehicle localization are critical for achieving safe and reliable high-level autonomy. Recent results show that GPS is vulnerable to spoofing attacks, which is one major threat to autonomous driving. In this paper, a novel anomaly detection and mitigation method against GPS attacks that utilizes onboard camera and high-precision maps is proposed to ensure accurate vehicle localization. First, lateral direction localization in driving lanes is calculated by camera-based lane detection and map matching respectively. Then, a real-time detector for GPS spoofing attack is developed to evaluate the localization data. When the attack is detected, a multi-source fusion-based localization method using Unscented Kalman filter is derived to mitigate GPS attack and improve the localization accuracy. The proposed method is validated in various scenarios in Carla simulator and open-source public dataset to demonstrate its effectiveness in timely GPS attack detection and data recovery.


Multi-View Factorization Machines

arXiv.org Machine Learning

For a learning task, data can usually be collected from different sources or be represented from multiple views. For example, laboratory results from different medical examinations are available for disease diagnosis, and each of them can only reflect the health state of a person from a particular aspect/view. Therefore, different views provide complementary information for learning tasks. An effective integration of the multi-view information is expected to facilitate the learning performance. In this paper, we propose a general predictor, named multi-view machines (MVMs), that can effectively include all the possible interactions between features from multiple views. A joint factorization is embedded for the full-order interaction parameters which allows parameter estimation under sparsity. Moreover, MVMs can work in conjunction with different loss functions for a variety of machine learning tasks. A stochastic gradient descent method is presented to learn the MVM model. We further illustrate the advantages of MVMs through comparison with other methods for multi-view classification, including support vector machines (SVMs), support tensor machines (STMs) and factorization machines (FMs).