Not enough data to create a plot.
Try a different view from the menu above.
Li, Gang
Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Yang, Ming, Li, Gang, Hu, Quanqi, Lin, Qihang, Yang, Tianbao
Constrained optimization with multiple functional inequality constraints has significant applications in machine learning. This paper examines a crucial subset of such problems where both the objective and constraint functions are weakly convex. Existing methods often face limitations, including slow convergence rates or reliance on double-loop algorithmic designs. To overcome these challenges, we introduce a novel single-loop penalty-based stochastic algorithm. Following the classical exact penalty method, our approach employs a {\bf hinge-based penalty}, which permits the use of a constant penalty parameter, enabling us to achieve a {\bf state-of-the-art complexity} for finding an approximate Karush-Kuhn-Tucker (KKT) solution. We further extend our algorithm to address finite-sum coupled compositional objectives, which are prevalent in artificial intelligence applications, establishing improved complexity over existing approaches. Finally, we validate our method through experiments on fair learning with receiver operating characteristic (ROC) fairness constraints and continual learning with non-forgetting constraints.
Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering
Li, Gang, Liu, Jizhong, Dinkel, Heinrich, Niu, Yadong, Zhang, Junbo, Luan, Jian
Recently, reinforcement learning (RL) has been shown to greatly enhance the reasoning capabilities of large language models (LLMs), and RL-based approaches have been progressively applied to visual multimodal tasks. However, the audio modality has largely been overlooked in these developments. Thus, we conduct a series of RL explorations in audio understanding and reasoning, specifically focusing on the audio question answering (AQA) task. We leverage the group relative policy optimization (GRPO) algorithm to Qwen2-Audio-7B-Instruct, and our experiments demonstrated state-of-the-art performance on the MMAU Test-mini benchmark, achieving an accuracy rate of 64.5%. The main findings in this technical report are as follows: 1) The GRPO algorithm can be effectively applied to large audio language models (LALMs), even when the model has only 8.2B parameters; 2) With only 38k post-training samples, RL significantly outperforms supervised fine-tuning (SFT), indicating that RL-based approaches can be effective without large datasets; 3) The explicit reasoning process has not shown significant benefits for AQA tasks, and how to efficiently utilize deep thinking remains an open question for further research; 4) LALMs still lag far behind humans auditory-language reasoning, suggesting that the RL-based approaches warrant further explorations.
FlowAgent: Achieving Compliance and Flexibility for Workflow Agents
Shi, Yuchen, Cai, Siqi, Xu, Zihan, Qin, Yuei, Li, Gang, Shao, Hang, Chen, Jiawei, Yang, Deqing, Li, Ke, Sun, Xing
The integration of workflows with large language models (LLMs) enables LLM-based agents to execute predefined procedures, enhancing automation in real-world applications. Traditional rule-based methods tend to limit the inherent flexibility of LLMs, as their predefined execution paths restrict the models' action space, particularly when the unexpected, out-of-workflow (OOW) queries are encountered. Conversely, prompt-based methods allow LLMs to fully control the flow, which can lead to diminished enforcement of procedural compliance. To address these challenges, we introduce FlowAgent, a novel agent framework designed to maintain both compliance and flexibility. We propose the Procedure Description Language (PDL), which combines the adaptability of natural language with the precision of code to formulate workflows. Building on PDL, we develop a comprehensive framework that empowers LLMs to manage OOW queries effectively, while keeping the execution path under the supervision of a set of controllers. Additionally, we present a new evaluation methodology to rigorously assess an LLM agent's ability to handle OOW scenarios, going beyond routine flow compliance tested in existing benchmarks. Experiments on three datasets demonstrate that FlowAgent not only adheres to workflows but also effectively manages OOW queries, highlighting its dual strengths in compliance and flexibility. The code is available at https://github.com/Lightblues/FlowAgent.
PAGNet: Pluggable Adaptive Generative Networks for Information Completion in Multi-Agent Communication
Zhang, Zhuohui, Cheng, Bin, Wang, Zhipeng, Zhou, Yanmin, Li, Gang, Lu, Ping, He, Bin, Chen, Jie
For partially observable cooperative tasks, multi-agent systems must develop effective communication and understand the interplay among agents in order to achieve cooperative goals. However, existing multi-agent reinforcement learning (MARL) with communication methods lack evaluation metrics for information weights and information-level communication modeling. This causes agents to neglect the aggregation of multiple messages, thereby significantly reducing policy learning efficiency. In this paper, we propose pluggable adaptive generative networks (PAGNet), a novel framework that integrates generative models into MARL to enhance communication and decision-making. PAGNet enables agents to synthesize global states representations from weighted local observations and use these representations alongside learned communication weights for coordinated decision-making. This pluggable approach reduces the computational demands typically associated with the joint training of communication and policy networks. Extensive experimental evaluations across diverse benchmarks and communication scenarios demonstrate the significant performance improvements achieved by PAGNet. Furthermore, we analyze the emergent communication patterns and the quality of generated global states, providing insights into operational mechanisms.
CAMP in the Odyssey: Provably Robust Reinforcement Learning with Certified Radius Maximization
Wang, Derui, Moore, Kristen, Goel, Diksha, Kim, Minjune, Li, Gang, Li, Yang, Doss, Robin, Xue, Minhui, Li, Bo, Camtepe, Seyit, Zhu, Liming
Deep reinforcement learning (DRL) has gained widespread adoption in control and decision-making tasks due to its strong performance in dynamic environments. However, DRL agents are vulnerable to noisy observations and adversarial attacks, and concerns about the adversarial robustness of DRL systems have emerged. Recent efforts have focused on addressing these robustness issues by establishing rigorous theoretical guarantees for the returns achieved by DRL agents in adversarial settings. Among these approaches, policy smoothing has proven to be an effective and scalable method for certifying the robustness of DRL agents. Nevertheless, existing certifiably robust DRL relies on policies trained with simple Gaussian augmentations, resulting in a suboptimal trade-off between certified robustness and certified return. To address this issue, we introduce a novel paradigm dubbed \texttt{C}ertified-r\texttt{A}dius-\texttt{M}aximizing \texttt{P}olicy (\texttt{CAMP}) training. \texttt{CAMP} is designed to enhance DRL policies, achieving better utility without compromising provable robustness. By leveraging the insight that the global certified radius can be derived from local certified radii based on training-time statistics, \texttt{CAMP} formulates a surrogate loss related to the local certified radius and optimizes the policy guided by this surrogate loss. We also introduce \textit{policy imitation} as a novel technique to stabilize \texttt{CAMP} training. Experimental results demonstrate that \texttt{CAMP} significantly improves the robustness-return trade-off across various tasks. Based on the results, \texttt{CAMP} can achieve up to twice the certified expected return compared to that of baselines. Our code is available at https://github.com/NeuralSec/camp-robust-rl.
A Semiparametric Bayesian Method for Instrumental Variable Analysis with Partly Interval-Censored Time-to-Event Outcome
Cui, Elvis Han, Lu, Xuyang, Zhou, Jin, Zhou, Hua, Li, Gang
This paper develops a semiparametric Bayesian instrumental variable analysis method for estimating the causal effect of an endogenous variable when dealing with unobserved confounders and measurement errors with partly interval-censored time-to-event data, where event times are observed exactly for some subjects but left-censored, right-censored, or interval-censored for others. Our method is based on a two-stage Dirichlet process mixture instrumental variable (DPMIV) model which simultaneously models the first-stage random error term for the exposure variable and the second-stage random error term for the time-to-event outcome using a bivariate Gaussian mixture of the Dirichlet process (DPM) model. The DPM model can be broadly understood as a mixture model with an unspecified number of Gaussian components, which relaxes the normal error assumptions and allows the number of mixture components to be determined by the data. We develop an MCMC algorithm for the DPMIV model tailored for partly interval-censored data and conduct extensive simulations to assess the performance of our DPMIV method in comparison with some competing methods. Our simulations revealed that our proposed method is robust under different error distributions and can have superior performance over its parametric counterpart under various scenarios. We further demonstrate the effectiveness of our approach on an UK Biobank data to investigate the causal effect of systolic blood pressure on time-to-development of cardiovascular disease from the onset of diabetes mellitus.
Large Language Models for Bioinformatics
Ruan, Wei, Lyu, Yanjun, Zhang, Jing, Cai, Jiazhang, Shu, Peng, Ge, Yang, Lu, Yao, Gao, Shang, Wang, Yue, Wang, Peilong, Zhao, Lin, Wang, Tao, Liu, Yufang, Fang, Luyang, Liu, Ziyu, Liu, Zhengliang, Li, Yiwei, Wu, Zihao, Chen, Junhao, Jiang, Hanqi, Pan, Yi, Yang, Zhenyuan, Chen, Jingyuan, Liang, Shizhe, Zhang, Wei, Ma, Terry, Dou, Yuan, Zhang, Jianli, Gong, Xinyu, Gan, Qi, Zou, Yusong, Chen, Zebang, Qian, Yuanxin, Yu, Shuo, Lu, Jin, Song, Kenan, Wang, Xianqiao, Sikora, Andrea, Li, Gang, Li, Xiang, Li, Quanzheng, Wang, Yingfeng, Zhang, Lu, Abate, Yohannes, He, Lifang, Zhong, Wenxuan, Liu, Rongjie, Huang, Chao, Liu, Wei, Shen, Ye, Ma, Ping, Zhu, Hongtu, Yan, Yajun, Zhu, Dajiang, Liu, Tianming
With the rapid advancements in large language model (LLM) technology and the emergence of bioinformatics-specific language models (BioLMs), there is a growing need for a comprehensive analysis of the current landscape, computational characteristics, and diverse applications. This survey aims to address this need by providing a thorough review of BioLMs, focusing on their evolution, classification, and distinguishing features, alongside a detailed examination of training methodologies, datasets, and evaluation frameworks. We explore the wide-ranging applications of BioLMs in critical areas such as disease diagnosis, drug discovery, and vaccine development, highlighting their impact and transformative potential in bioinformatics. We identify key challenges and limitations inherent in BioLMs, including data privacy and security concerns, interpretability issues, biases in training data and model outputs, and domain adaptation complexities. Finally, we highlight emerging trends and future directions, offering valuable insights to guide researchers and clinicians toward advancing BioLMs for increasingly sophisticated biological and clinical applications.
Adaptable and Precise: Enterprise-Scenario LLM Function-Calling Capability Training Pipeline
Zeng, Guancheng, Ding, Wentao, Xu, Beining, Zhang, Chi, Han, Wenqiang, Li, Gang, Mo, Jingjing, Qiu, Pengxu, Tao, Xinran, Tao, Wang, Hu, Haowen
Enterprises possess a vast array of API assets scattered across various functions, forming the backbone of existing business processes. By leveraging these APIs as functional tools, enterprises can design diverse, scenario-specific agent applications, driven by on-premise function-calling models as the core engine. However, generic models often fail to meet enterprise requirements in terms of computational efficiency, output accuracy, and stability, necessitating scenario-specific adaptation. In this paper, we propose a training pipeline for function-calling capabilities tailored to real-world business scenarios. This pipeline includes the synthesis and augmentation of scenario-specific function-calling data, model fine-tuning, and performance evaluation and analysis. Using this pipeline, we generated 1,260 fully AI-generated samples and 1,035 augmented manually-labeled samples in digital HR agent scenario. The Qwen2.5-Coder-7B-Instruct model was employed as the base model and fine-tuned using the LoRA method on four GPUs with 24GB VRAM. Our fine-tuned model demonstrated outstanding performance in evaluations and practical applications, surpassing GPT-4 and GPT-4o in accuracy on the test set. These results validate the reliability of the proposed pipeline for training scenario-specific function-calling models.
Can video generation replace cinematographers? Research on the cinematic language of generated video
Li, Xiaozhe, WU, Kai, Yang, Siyi, Qu, YiZhan, Zhang, Guohua., Chen, Zhiyu, Li, Jiayao, Mu, Jiangchuan, Hu, Xiaobin, Fang, Wen, Xiong, Mingliang, Deng, Hao, Liu, Qingwen, Li, Gang, He, Bin
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance the visual coherence of videos generated from textual descriptions. However, most research has primarily focused on object motion, with limited attention given to cinematic language in videos, which is crucial for cinematographers to convey emotion and narrative pacing. To address this limitation, we propose a threefold approach to enhance the ability of T2V models to generate controllable cinematic language. Specifically, we introduce a cinematic language dataset that encompasses shot framing, angle, and camera movement, enabling models to learn diverse cinematic styles. Building on this, to facilitate robust cinematic alignment evaluation, we present CameraCLIP, a model fine-tuned on the proposed dataset that excels in understanding complex cinematic language in generated videos and can further provide valuable guidance in the multi-shot composition process. Finally, we propose CLIPLoRA, a cost-guided dynamic LoRA composition method that facilitates smooth transitions and realistic blending of cinematic language by dynamically fusing multiple pre-trained cinematic LoRAs within a single video. Our experiments demonstrate that CameraCLIP outperforms existing models in assessing the alignment between cinematic language and video, achieving an R@1 score of 0.81. Additionally, CLIPLoRA improves the ability for multi-shot composition, potentially bridging the gap between automatically generated videos and those shot by professional cinematographers.
Model Developmental Safety: A Retention-Centric Method and Applications in Vision-Language Models
Li, Gang, Yu, Wendi, Yao, Yao, Tong, Wei, Liang, Yingbin, Lin, Qihang, Yang, Tianbao
In the real world, a learning-enabled system usually undergoes multiple cycles of model development to enhance the system's ability to handle difficult or emerging tasks. This continual model development process raises a significant issue that the model development for acquiring new or improving existing capabilities may inadvertently lose capabilities of the old model, also known as catastrophic forgetting. Existing continual learning studies focus on mitigating catastrophic forgetting by trading off performance on previous tasks and new tasks to ensure good average performance. However, they are inadequate for many applications especially in safety-critical domains, as failure to strictly preserve the good performance of the old model not only introduces safety risks and uncertainties but also imposes substantial expenses in the re-improving and re-validation of existing properties. To address this issue, we introduce model developmental safety as a guarantee of a learning system such that in the model development process the new model should strictly preserve the existing protected capabilities of the old model while improving its performance on target tasks. To ensure the model developmental safety, we present a retention-centric framework by formulating the model developmental safety as data-dependent constraints. Under this framework, we study how to develop a pretrained vision-language model, specifically the CLIP model, for acquiring new capabilities or improving existing capabilities of image classification. We propose an efficient constrained optimization algorithm with theoretical guarantee and use its insights to finetune a CLIP model with task-dependent heads for promoting the model developmental safety. Our experiments on improving vision perception capabilities on autonomous driving and scene recognition datasets demonstrate the efficacy of the proposed approach.