Li, Feng
Robotic CBCT Meets Robotic Ultrasound
Li, Feng, Bi, Yuan, Huang, Dianye, Jiang, Zhongliang, Navab, Nassir
The multi-modality imaging system offers optimal fused images for safe and precise interventions in modern clinical practices, such as computed tomography - ultrasound (CT-US) guidance for needle insertion. However, the limited dexterity and mobility of current imaging devices hinder their integration into standardized workflows and the advancement toward fully autonomous intervention systems. In this paper, we present a novel clinical setup where robotic cone beam computed tomography (CBCT) and robotic US are pre-calibrated and dynamically co-registered, enabling new clinical applications. This setup allows registration-free rigid registration, facilitating multi-modal guided procedures in the absence of tissue deformation. First, a one-time pre-calibration is performed between the systems. To ensure a safe insertion path by highlighting critical vasculature on the 3D CBCT, SAM2 segments vessels from B-mode images, using the Doppler signal as an autonomously generated prompt. Based on the registration, the Doppler image or segmented vessel masks are then mapped onto the CBCT, creating an optimally fused image with comprehensive detail. To validate the system, we used a specially designed phantom, featuring lesions covered by ribs and multiple vessels with simulated moving flow. The mapping error between US and CBCT resulted in an average deviation of 1.72+-0.62 mm. A user study demonstrated the effectiveness of CBCT-US fusion for needle insertion guidance, showing significant improvements in time efficiency, accuracy, and success rate. Needle intervention performance improved by approximately 50% compared to the conventional US-guided workflow. We present the first robotic dual-modality imaging system designed to guide clinical applications. The results show significant performance improvements compared to traditional manual interventions.
A Powered Prosthetic Hand with Vision System for Enhancing the Anthropopathic Grasp
Xu, Yansong, Wang, Xiaohui, Li, Junlin, Zhang, Xiaoqian, Li, Feng, Gao, Qing, Fu, Chenglong, Leng, Yuquan
The anthropomorphism of grasping process significantly benefits the experience and grasping efficiency of prosthetic hand wearers. Currently, prosthetic hands controlled by signals such as brain-computer interfaces (BCI) and electromyography (EMG) face difficulties in precisely recognizing the amputees' grasping gestures and executing anthropomorphic grasp processes. Although prosthetic hands equipped with vision systems enables the objects' feature recognition, they lack perception of human grasping intention. Therefore, this paper explores the estimation of grasping gestures solely through visual data to accomplish anthropopathic grasping control and the determination of grasping intention within a multi-object environment. To address this, we propose the Spatial Geometry-based Gesture Mapping (SG-GM) method, which constructs gesture functions based on the geometric features of the human hand grasping processes. It's subsequently implemented on the prosthetic hand. Furthermore, we propose the Motion Trajectory Regression-based Grasping Intent Estimation (MTR-GIE) algorithm. This algorithm predicts pre-grasping object utilizing regression prediction and prior spatial segmentation estimation derived from the prosthetic hand's position and trajectory. The experiments were conducted to grasp 8 common daily objects including cup, fork, etc. The experimental results presented a similarity coefficient $R^{2}$ of grasping process of 0.911, a Root Mean Squared Error ($RMSE$) of 2.47\degree, a success rate of grasping of 95.43$\%$, and an average duration of grasping process of 3.07$\pm$0.41 s. Furthermore, grasping experiments in a multi-object environment were conducted. The average accuracy of intent estimation reached 94.35$\%$. Our methodologies offer a groundbreaking approach to enhance the prosthetic hand's functionality and provides valuable insights for future research.
WavFusion: Towards wav2vec 2.0 Multimodal Speech Emotion Recognition
Li, Feng, Luo, Jiusong, Xia, Wanjun
Speech emotion recognition (SER) remains a challenging yet crucial task due to the inherent complexity and diversity of human emotions. To address this problem, researchers attempt to fuse information from other modalities via multimodal learning. However, existing multimodal fusion techniques often overlook the intricacies of cross-modal interactions, resulting in suboptimal feature representations. In this paper, we propose WavFusion, a multimodal speech emotion recognition framework that addresses critical research problems in effective multimodal fusion, heterogeneity among modalities, and discriminative representation learning. By leveraging a gated cross-modal attention mechanism and multimodal homogeneous feature discrepancy learning, WavFusion demonstrates improved performance over existing state-of-the-art methods on benchmark datasets. Our work highlights the importance of capturing nuanced cross-modal interactions and learning discriminative representations for accurate multimodal SER. Experimental results on two benchmark datasets (IEMOCAP and MELD) demonstrate that WavFusion succeeds over the state-of-the-art strategies on emotion recognition.
Long Term Memory: The Foundation of AI Self-Evolution
Jiang, Xun, Li, Feng, Zhao, Han, Wang, Jiaying, Shao, Jun, Xu, Shihao, Zhang, Shu, Chen, Weiling, Tang, Xavier, Chen, Yize, Wu, Mengyue, Ma, Weizhi, Wang, Mengdi, Chen, Tianqiao
Large language models (LLMs) like GPTs, trained on vast datasets, have demonstrated impressive capabilities in language understanding, reasoning, and planning, achieving human-level performance in various tasks. Most studies focus on enhancing these models by training on ever-larger datasets to build more powerful foundation models. While training stronger models is important, enabling models to evolve during inference is equally crucial, a process we refer to as AI self-evolution. Unlike large-scale training, self-evolution may rely on limited data or interactions. Inspired by the columnar organization of the human cerebral cortex, we hypothesize that AI models could develop cognitive abilities and build internal representations through iterative interactions with their environment. To achieve this, models need long-term memory (LTM) to store and manage processed interaction data. LTM supports self-evolution by representing diverse experiences across environments and agents. In this report, we explore AI self-evolution and its potential to enhance models during inference. We examine LTM's role in lifelong learning, allowing models to evolve based on accumulated interactions. We outline the structure of LTM and the systems needed for effective data retention and representation. We also classify approaches for building personalized models with LTM data and show how these models achieve self-evolution through interaction. Using LTM, our multi-agent framework OMNE achieved first place on the GAIA benchmark, demonstrating LTM's potential for AI self-evolution. Finally, we present a roadmap for future research, emphasizing the importance of LTM for advancing AI technology and its practical applications.
ROSS:RObust decentralized Stochastic learning based on Shapley values
Wang, Lina, Yuan, Yunsheng, Li, Feng, Duan, Lingjie
In the paradigm of decentralized learning, a group of agents collaborate to learn a global model using a distributed dataset without a central server; nevertheless, it is severely challenged by the heterogeneity of the data distribution across the agents. For example, the data may be distributed non-independently and identically, and even be noised or poisoned. To address these data challenges, we propose ROSS, a novel robust decentralized stochastic learning algorithm based on Shapley values, in this paper. Specifically, in each round, each agent aggregates the cross-gradient information from its neighbors, i.e., the derivatives of its local model with respect to the datasets of its neighbors, to update its local model in a momentum like manner, while we innovate in weighting the derivatives according to their contributions measured by Shapley values. We perform solid theoretical analysis to reveal the linear convergence speedup of our ROSS algorithm. We also verify the efficacy of our algorithm through extensive experiments on public datasets. Our results demonstrate that, in face of the above variety of data challenges, our ROSS algorithm have oblivious advantages over existing state-of-the-art proposals in terms of both convergence and prediction accuracy.
Optimal starting point for time series forecasting
Zhong, Yiming, Ren, Yinuo, Cao, Guangyao, Li, Feng, Qi, Haobo
Recent advances on time series forecasting mainly focus on improving the forecasting models themselves. However, managing the length of the input data can also significantly enhance prediction performance. In this paper, we introduce a novel approach called Optimal Starting Point Time Series Forecast (OSP-TSP) to capture the intrinsic characteristics of time series data. By adjusting the sequence length via leveraging the XGBoost and LightGBM models, the proposed approach can determine optimal starting point (OSP) of the time series and thus enhance the prediction performances. The performances of the OSP-TSP approach are then evaluated across various frequencies on the M4 dataset and other real-world datasets. Empirical results indicate that predictions based on the OSP-TSP approach consistently outperform those using the complete dataset. Moreover, recognizing the necessity of sufficient data to effectively train models for OSP identification, we further propose targeted solutions to address the issue of data insufficiency.
LLaVA-NeXT-Interleave: Tackling Multi-image, Video, and 3D in Large Multimodal Models
Li, Feng, Zhang, Renrui, Zhang, Hao, Zhang, Yuanhan, Li, Bo, Li, Wei, Ma, Zejun, Li, Chunyuan
Visual instruction tuning has made considerable strides in enhancing the capabilities of Large Multimodal Models (LMMs). However, existing open LMMs largely focus on single-image tasks, their applications to multi-image scenarios remains less explored. Additionally, prior LMM research separately tackles different scenarios, leaving it impossible to generalize cross scenarios with new emerging capabilities. To this end, we introduce LLaVA-NeXT-Interleave, which simultaneously tackles Multi-image, Multi-frame (video), Multi-view (3D), and Multi-patch (single-image) scenarios in LMMs. To enable these capabilities, we regard the interleaved data format as a general template and compile the M4-Instruct dataset with 1,177.6k samples, spanning 4 primary domains with 14 tasks and 41 datasets. We also curate the LLaVA-Interleave Bench to comprehensively evaluate the multi-image performance of LMMs. Through extensive experiments, LLaVA-NeXT-Interleave achieves leading results in multi-image, video, and 3D benchmarks, while maintaining the performance of single-image tasks. Besides, our model also exhibits several emerging capabilities, e.g., transferring tasks across different settings and modalities. Code is available at https://github.com/LLaVA-VL/LLaVA-NeXT
Privacy-Aware Spectrum Pricing and Power Control Optimization for LEO Satellite Internet-of-Things
Shen, Bowen, Lam, Kwok-Yan, Li, Feng
Low earth orbit (LEO) satellite systems play an important role in next generation communication networks due to their ability to provide extensive global coverage with guaranteed communications in remote areas and isolated areas where base stations cannot be cost-efficiently deployed. With the pervasive adoption of LEO satellite systems, especially in the LEO Internet-of-Things (IoT) scenarios, their spectrum resource management requirements have become more complex as a result of massive service requests and high bandwidth demand from terrestrial terminals. For instance, when leasing the spectrum to terrestrial users and controlling the uplink transmit power, satellites collect user data for machine learning purposes, which usually are sensitive information such as location, budget and quality of service (QoS) requirement. To facilitate model training in LEO IoT while preserving the privacy of data, blockchain-driven federated learning (FL) is widely used by leveraging on a fully decentralized architecture. In this paper, we propose a hybrid spectrum pricing and power control framework for LEO IoT by combining blockchain technology and FL. We first design a local deep reinforcement learning algorithm for LEO satellite systems to learn a revenue-maximizing pricing and power control scheme. Then the agents collaborate to form a FL system. We also propose a reputation-based blockchain which is used in the global model aggregation phase of FL. Based on the reputation mechanism, a node is selected for each global training round to perform model aggregation and block generation, which can further enhance the decentralization of the network and guarantee the trust. Simulation tests are conducted to evaluate the performances of the proposed scheme. Our results show the efficiency of finding the maximum revenue scheme for LEO satellite systems while preserving the privacy of each agent.
TAPTR: Tracking Any Point with Transformers as Detection
Li, Hongyang, Zhang, Hao, Liu, Shilong, Zeng, Zhaoyang, Ren, Tianhe, Li, Feng, Zhang, Lei
In this paper, we propose a simple and strong framework for Tracking Any Point with TRansformers (TAPTR). Based on the observation that point tracking bears a great resemblance to object detection and tracking, we borrow designs from DETR-like algorithms to address the task of TAP. In the proposed framework, in each video frame, each tracking point is represented as a point query, which consists of a positional part and a content part. As in DETR, each query (its position and content feature) is naturally updated layer by layer. Its visibility is predicted by its updated content feature. Queries belonging to the same tracking point can exchange information through self-attention along the temporal dimension. As all such operations are well-designed in DETR-like algorithms, the model is conceptually very simple. We also adopt some useful designs such as cost volume from optical flow models and develop simple designs to provide long temporal information while mitigating the feature drifting issue. Our framework demonstrates strong performance with state-of-the-art performance on various TAP datasets with faster inference speed.
Incentivizing Massive Unknown Workers for Budget-Limited Crowdsensing: From Off-Line and On-Line Perspectives
Li, Feng, Chai, Yuqi, Yang, Huan, Hu, Pengfei, Duan, Lingjie
How to incentivize strategic workers using limited budget is a very fundamental problem for crowdsensing systems; nevertheless, since the sensing abilities of the workers may not always be known as prior knowledge due to the diversities of their sensor devices and behaviors, it is difficult to properly select and pay the unknown workers. Although the uncertainties of the workers can be addressed by the standard Combinatorial Multi-Armed Bandit (CMAB) framework in existing proposals through a trade-off between exploration and exploitation, we may not have sufficient budget to enable the trade-off among the individual workers, especially when the number of the workers is huge while the budget is limited. Moreover, the standard CMAB usually assumes the workers always stay in the system, whereas the workers may join in or depart from the system over time, such that what we have learnt for an individual worker cannot be applied after the worker leaves. To address the above challenging issues, in this paper, we first propose an off-line Context-Aware CMAB-based Incentive (CACI) mechanism. We innovate in leveraging the exploration-exploitation trade-off in an elaborately partitioned context space instead of the individual workers, to effectively incentivize the massive unknown workers with a very limited budget. We also extend the above basic idea to the on-line setting where unknown workers may join in or depart from the systems dynamically, and propose an on-line version of the CACI mechanism. We perform rigorous theoretical analysis to reveal the upper bounds on the regrets of our CACI mechanisms and to prove their truthfulness and individual rationality, respectively. Extensive experiments on both synthetic and real datasets are also conducted to verify the efficacy of our mechanisms.