Goto

Collaborating Authors

 Li, Duo


Anti-bullying Adaptive Cruise Control: A proactive right-of-way protection approach

arXiv.org Artificial Intelligence

The current Adaptive Cruise Control (ACC) systems are vulnerable to "road bully" such as cut-ins. This paper proposed an Anti-bullying Adaptive Cruise Control (AACC) approach with proactive right-of-way protection ability. It bears the following features: i) with the enhanced capability of preventing bullying from cut-ins; ii) optimal but not unsafe; iii) adaptive to various driving styles of cut-in vehicles; iv) with real-time field implementation capability. The proposed approach can identify other road users' driving styles online and conduct game-based motion planning for right-of-way protection. A detailed investigation of the simulation results shows that the proposed approach can prevent bullying from cut-ins and be adaptive to different cut-in vehicles' driving styles. The proposed approach is capable of enhancing travel efficiency by up to 29.55% under different cut-in gaps and can strengthen driving safety compared with the current ACC controller. The proposed approach is flexible and robust against traffic congestion levels. It can improve mobility by up to 11.93% and robustness by 8.74% in traffic flow. Furthermore, the proposed approach can support real-time field implementation by ensuring less than 50 milliseconds computation time.


Accelerating the Evolution of Personalized Automated Lane Change through Lesson Learning

arXiv.org Artificial Intelligence

Personalization is crucial for the widespread adoption of advanced driver assistance system. To match up with each user's preference, the online evolution capability is a must. However, conventional evolution methods learn from naturalistic driving data, which requires a lot computing power and cannot be applied online. To address this challenge, this paper proposes a lesson learning approach: learning from driver's takeover interventions. By leveraging online takeover data, the driving zone is generated to ensure perceived safety using Gaussian discriminant analysis. Real-time corrections to trajectory planning rewards are enacted through apprenticeship learning. Guided by the objective of optimizing rewards within the constraints of the driving zone, this approach employs model predictive control for trajectory planning. This lesson learning framework is highlighted for its faster evolution capability, adeptness at experience accumulating, assurance of perceived safety, and computational efficiency. Simulation results demonstrate that the proposed system consistently achieves a successful customization without further takeover interventions. Accumulated experience yields a 24% enhancement in evolution efficiency. The average number of learning iterations is only 13.8. The average computation time is 0.08 seconds.


Space Domain based Ecological Cooperative and Adaptive Cruise Control on Rolling Terrain

arXiv.org Artificial Intelligence

Ecological Cooperative and Adaptive Cruise Control (Eco-CACC) is widely focused to enhance sustainability of CACC. However, state-of-the-art Eco-CACC studies are still facing challenges in adopting on rolling terrain. Furthermore, they cannot ensure both ecology optimality and computational efficiency. Hence, this paper proposes a nonlinear optimal control based Eco-CACC controller. It has the following features: i) enhancing performance across rolling terrains by modeling in space domain; ii) enhancing fuel efficiency via globally optimizing all vehicle's fuel consumptions; iii) ensuring computational efficiency by developing a differential dynamic programming-based solving method for the non-linear optimal control problem; iv) ensuring string stability through theoretically proving and experimentally validating. The performance of the proposed Eco-CACC controller was evaluated. Results showed that the proposed Eco-CACC controller can improve average fuel saving by 37.67% at collector road and about 17.30% at major arterial.


Few-Shot Class-Incremental Learning with Prior Knowledge

arXiv.org Artificial Intelligence

To tackle the issues of catastrophic forgetting and overfitting in few-shot class-incremental learning (FSCIL), previous work has primarily concentrated on preserving the memory of old knowledge during the incremental phase. The role of pre-trained model in shaping the effectiveness of incremental learning is frequently underestimated in these studies. Therefore, to enhance the generalization ability of the pre-trained model, we propose Learning with Prior Knowledge (LwPK) by introducing nearly free prior knowledge from a few unlabeled data of subsequent incremental classes. We cluster unlabeled incremental class samples to produce pseudo-labels, then jointly train these with labeled base class samples, effectively allocating embedding space for both old and new class data. Experimental results indicate that LwPK effectively enhances the model resilience against catastrophic forgetting, with theoretical analysis based on empirical risk minimization and class distance measurement corroborating its operational principles. The source code of LwPK is publicly available at: \url{https://github.com/StevenJ308/LwPK}.


Unifying Nonlocal Blocks for Neural Networks

arXiv.org Artificial Intelligence

The nonlocal-based blocks are designed for capturing long-range spatial-temporal dependencies in computer vision tasks. Although having shown excellent performance, they still lack the mechanism to encode the rich, structured information among elements in an image or video. In this paper, to theoretically analyze the property of these nonlocal-based blocks, we provide a new perspective to interpret them, where we view them as a set of graph filters generated on a fully-connected graph. Specifically, when choosing the Chebyshev graph filter, a unified formulation can be derived for explaining and analyzing the existing nonlocal-based blocks (e.g., nonlocal block, nonlocal stage, double attention block). Furthermore, by concerning the property of spectral, we propose an efficient and robust spectral nonlocal block, which can be more robust and flexible to catch long-range dependencies when inserted into deep neural networks than the existing nonlocal blocks. Experimental results demonstrate the clear-cut improvements and practical applicabilities of our method on image classification, action recognition, semantic segmentation, and person re-identification tasks.