Goto

Collaborating Authors

 Li, Cong


Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM

arXiv.org Artificial Intelligence

Recent advancements in code large language models (LLMs) have demonstrated remarkable capabilities in code generation and understanding. It is still challenging to build a code LLM with comprehensive performance yet ultimate efficiency. Many attempts have been released in the open source community to break the trade-off between performance and efficiency, such as the Qwen Coder series and the DeepSeek Coder series. This paper introduces yet another attempt in this area, namely Ling-Coder-Lite. We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods (especially those based on program analytics) to build an efficient yet powerful code LLM. Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size, such as Qwen2.5-Coder-7B and DeepSeek-Coder-V2-Lite, while offering competitive latency and throughput. In practice, we achieve a 50\% reduction in deployment resources compared to the similar-sized dense model without performance loss. To facilitate further research and development in this area, we open-source our models as well as a substantial portion of high-quality data for the annealing and post-training stages. The models and data can be accessed at~\url{https://huggingface.co/inclusionAI/Ling-Coder-lite}.


Toward Scalable Multirobot Control: Fast Policy Learning in Distributed MPC

arXiv.org Artificial Intelligence

Distributed model predictive control (DMPC) is promising in achieving optimal cooperative control in multirobot systems (MRS). However, real-time DMPC implementation relies on numerical optimization tools to periodically calculate local control sequences online. This process is computationally demanding and lacks scalability for large-scale, nonlinear MRS. This article proposes a novel distributed learning-based predictive control (DLPC) framework for scalable multirobot control. Unlike conventional DMPC methods that calculate open-loop control sequences, our approach centers around a computationally fast and efficient distributed policy learning algorithm that generates explicit closed-loop DMPC policies for MRS without using numerical solvers. The policy learning is executed incrementally and forward in time in each prediction interval through an online distributed actor-critic implementation. The control policies are successively updated in a receding-horizon manner, enabling fast and efficient policy learning with the closed-loop stability guarantee. The learned control policies could be deployed online to MRS with varying robot scales, enhancing scalability and transferability for large-scale MRS. Furthermore, we extend our methodology to address the multirobot safe learning challenge through a force field-inspired policy learning approach. We validate our approach's effectiveness, scalability, and efficiency through extensive experiments on cooperative tasks of large-scale wheeled robots and multirotor drones. Our results demonstrate the rapid learning and deployment of DMPC policies for MRS with scales up to 10,000 units.


scReader: Prompting Large Language Models to Interpret scRNA-seq Data

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable advancements, primarily due to their capabilities in modeling the hidden relationships within text sequences. This innovation presents a unique opportunity in the field of life sciences, where vast collections of single-cell omics data from multiple species provide a foundation for training foundational models. However, the challenge lies in the disparity of data scales across different species, hindering the development of a comprehensive model for interpreting genetic data across diverse organisms. In this study, we propose an innovative hybrid approach that integrates the general knowledge capabilities of LLMs with domain-specific representation models for single-cell omics data interpretation. We begin by focusing on genes as the fundamental unit of representation. Gene representations are initialized using functional descriptions, leveraging the strengths of mature language models such as LLaMA-2. By inputting single-cell gene-level expression data with prompts, we effectively model cellular representations based on the differential expression levels of genes across various species and cell types. In the experiments, we constructed developmental cells from humans and mice, specifically targeting cells that are challenging to annotate. We evaluated our methodology through basic tasks such as cell annotation and visualization analysis. The results demonstrate the efficacy of our approach compared to other methods using LLMs, highlighting significant improvements in accuracy and interoperability. Our hybrid approach enhances the representation of single-cell data and offers a robust framework for future research in cross-species genetic analysis.


A Unified Platform for At-Home Post-Stroke Rehabilitation Enabled by Wearable Technologies and Artificial Intelligence

arXiv.org Artificial Intelligence

Hubin Zhao (hubin.zhao@ucl.ac.uk), and Luigi G. Occhipinti (lgo23@cam.ac.uk) Abstract At-home rehabilitation for post-stroke patients presents significant challenges, as continuous, personalized care is often limited outside clinical settings. Additionally, the absence of comprehensive solutions addressing diverse rehabilitation needs in home environments complicates recovery efforts. Here, we introduce a smart home platform that integrates wearable sensors, ambient monitoring, and large language model (LLM)-powered assistance to provide seamless health monitoring and intelligent support. The system leverages machine learning enabled plantar pressure arrays for motor recovery assessment (94% classification accuracy), a wearable eye-tracking module for cognitive evaluation, and ambient sensors for precise smart home control (100% operational success, <1 s latency). Additionally, the LLM-powered agent, Auto-Care, offers real-time interventions, such as health reminders and environmental adjustments, enhancing user satisfaction by 29%. This work establishes a fully integrated platform for long-term, personalized rehabilitation, offering new possibilities for managing chronic conditions and supporting aging populations. Stroke is the third leading cause of disability worldwide, affecting more than 101 million people [1, 2]. Post-stroke recovery is not only a prolonged process but also a resource-intensive one, imposing significant economic and caregiving burdens on families and healthcare systems--a challenge exacerbated by global aging [5]. For many patients, the home becomes a critical environment for rehabilitation, as opportunities for continuous and personalized care are limited outside of clinical settings [6].


Wearable intelligent throat enables natural speech in stroke patients with dysarthria

arXiv.org Artificial Intelligence

Wearable silent speech systems hold significant potential for restoring communication in patients with speech impairments. However, seamless, coherent speech remains elusive, and clinical efficacy is still unproven. Here, we present an AI-driven intelligent throat (IT) system that integrates throat muscle vibrations and carotid pulse signal sensors with large language model (LLM) processing to enable fluent, emotionally expressive communication. The system utilizes ultrasensitive textile strain sensors to capture high-quality signals from the neck area and supports token-level processing for real-time, continuous speech decoding, enabling seamless, delay-free communication. In tests with five stroke patients with dysarthria, IT's LLM agents intelligently corrected token errors and enriched sentence-level emotional and logical coherence, achieving low error rates (4.2% word error rate, 2.9% sentence error rate) and a 55% increase in user satisfaction. This work establishes a portable, intuitive communication platform for patients with dysarthria with the potential to be applied broadly across different neurological conditions and in multi-language support systems. This impairment drastically restricts effective communication, lowers quality of life, substantially impedes the rehabilitation process, and can even lead to severe psychological issues [1, 2, 3, 4]. Augmentative and alternative communication (AAC) technologies have been developed to address these challenges, including letter-by-letter spelling systems utilizing head or eye tracking [5, 6, 7, 8] and neuroprosthetics powered by brain-computer interface (BCI) devices [9, 10, 11, 12].


MH-pFLGB: Model Heterogeneous personalized Federated Learning via Global Bypass for Medical Image Analysis

arXiv.org Artificial Intelligence

In the evolving application of medical artificial intelligence, federated learning is notable for its ability to protect training data privacy. Federated learning facilitates collaborative model development without the need to share local data from healthcare institutions. Yet, the statistical and system heterogeneity among these institutions poses substantial challenges, which affects the effectiveness of federated learning and hampers the exchange of information between clients. To address these issues, we introduce a novel approach, MH-pFLGB, which employs a global bypass strategy to mitigate the reliance on public datasets and navigate the complexities of non-IID data distributions. Our method enhances traditional federated learning by integrating a global bypass model, which would share the information among the clients, but also serves as part of the network to enhance the performance on each client. Additionally, MH-pFLGB provides a feature fusion module to better combine the local and global features. We validate MH-pFLGB's effectiveness and adaptability through extensive testing on different medical tasks, demonstrating superior performance compared to existing state-of-the-art methods. Keywords: Model heterogeneous Personalized federated learning Global bypass model.


pFLFE: Cross-silo Personalized Federated Learning via Feature Enhancement on Medical Image Segmentation

arXiv.org Artificial Intelligence

In medical image segmentation, personalized cross-silo federated learning (FL) is becoming popular for utilizing varied data across healthcare settings to overcome data scarcity and privacy concerns. However, existing methods often suffer from client drift, leading to inconsistent performance and delayed training. We propose a new framework, Personalized Federated Learning via Feature Enhancement (pFLFE), designed to mitigate these challenges. pFLFE consists of two main stages: feature enhancement and supervised learning. The first stage improves differentiation between foreground and background features, and the second uses these enhanced features for learning from segmentation masks. We also design an alternative training approach that requires fewer communication rounds without compromising segmentation quality, even with limited communication resources. Through experiments on three medical segmentation tasks, we demonstrate that pFLFE outperforms the state-of-the-art methods.


MH-pFLID: Model Heterogeneous personalized Federated Learning via Injection and Distillation for Medical Data Analysis

arXiv.org Artificial Intelligence

Federated learning is widely used in medical applications for training global models without needing local data access. However, varying computational capabilities and network architectures (system heterogeneity), across clients pose significant challenges in effectively aggregating information from non-independently and identically distributed (non-IID) data. Current federated learning methods using knowledge distillation require public datasets, raising privacy and data collection issues. Additionally, these datasets require additional local computing and storage resources, which is a burden for medical institutions with limited hardware conditions. In this paper, we introduce a novel federated learning paradigm, named Model Heterogeneous personalized Federated Learning via Injection and Distillation (MH-pFLID). Our framework leverages a lightweight messenger model that carries concentrated information to collect the information from each client. We also develop a set of receiver and transmitter modules to receive and send information from the messenger model, so that the information could be injected and distilled with efficiency.


Nyonic Technical Report

arXiv.org Artificial Intelligence

This report details the development and key achievements of our latest language model designed for custom large language models. The advancements introduced include a novel Online Data Scheduler that supports flexible training data adjustments and curriculum learning. The model's architecture is fortified with state-of-the-art techniques such as Rotary Positional Embeddings, QK-LayerNorm, and a specially crafted multilingual tokenizer to enhance stability and performance. Moreover, our robust training framework incorporates advanced monitoring and rapid recovery features to ensure optimal efficiency. Our Wonton 7B model has demonstrated competitive performance on a range of multilingual and English benchmarks. Future developments will prioritize narrowing the performance gap with more extensively trained models, thereby enhancing the model's real-world efficacy and adaptability.


Deep Incremental Model Based Reinforcement Learning: A One-Step Lookback Approach for Continuous Robotics Control

arXiv.org Artificial Intelligence

Model-based reinforcement learning (MBRL) attempts to use an available or a learned model to improve the data efficiency of reinforcement learning. This work proposes a one-step lookback approach that jointly learns the latent-space model and the policy to realize the sample-efficient continuous robotic control, wherein the control-theoretical knowledge is utilized to decrease the model learning difficulty. Specifically, the so-called one-step backward data is utilized to facilitate the incremental evolution model, an alternative structured representation of the robotics evolution model in the MBRL field. The incremental evolution model accurately predicts the robotics movement but with low sample complexity. This is because the formulated incremental evolution model degrades the model learning difficulty into a parametric matrix learning problem, which is especially favourable to high-dimensional robotics applications. The imagined data from the learned incremental evolution model is used to supplement training data to enhance the sample efficiency. Comparative numerical simulations on benchmark continuous robotics control problems are conducted to validate the efficiency of our proposed one-step lookback approach.