Goto

Collaborating Authors

 Li, Chunyang


Patterns Over Principles: The Fragility of Inductive Reasoning in LLMs under Noisy Observations

arXiv.org Artificial Intelligence

Inductive reasoning, a cornerstone of human cognition, enables generalization from limited data but hasn't yet been fully achieved by large language models (LLMs). While modern LLMs excel at reasoning tasks, their ability to maintain stable and consistent rule abstraction under imperfect observations remains underexplored. To fill this gap, in this work, we introduce Robust Rule Induction, a task that evaluates LLMs' capability in inferring rules from data that are fused with noisy examples. To address this task, we further propose Sample-steered Rule Refinement (SRR), a method enhancing reasoning stability via observation diversification and execution-guided feedback. Experiments across arithmetic, cryptography, and list functions reveal: (1) SRR outperforms other methods with minimal performance degradation under noise; (2) Despite slight accuracy variation, LLMs exhibit instability under noise (e.g., 0% accuracy change with only 70% consistent score); (3) Counterfactual task gaps highlight LLMs' reliance on memorized patterns over genuine abstraction. Our findings challenge LLMs' reasoning robustness, revealing susceptibility to hypothesis drift and pattern overfitting, while providing empirical evidence critical for developing human-like inductive systems. Code and data are available at \href{https://github.com/lcy2723/Robust-Rule-Induction}{https://github.com/lcy2723/Robust-Rule-Induction}.


LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning

arXiv.org Artificial Intelligence

Modern large language models (LLMs) employ various forms of logical inference, both implicitly and explicitly, when addressing reasoning tasks. Understanding how to optimally leverage these inference paradigms is critical for advancing LLMs' reasoning capabilities. This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning -- a fundamental cognitive task -- that is systematically parameterized across three dimensions: modality (textual, visual, symbolic), difficulty (easy, medium, hard), and task format (multiple-choice or free-text generation). We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines across these dimensions, and demonstrate that our findings generalize to broader in-context learning tasks. Additionally, we investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference in LLM reasoning. This exploratory study provides a foundation for future research in enhancing LLM reasoning through systematic logical inference strategies.


Deep Signature: Characterization of Large-Scale Molecular Dynamics

arXiv.org Artificial Intelligence

Understanding protein dynamics are essential for deciphering protein functional mechanisms and developing molecular therapies. However, the complex highdimensional dynamics and interatomic interactions of biological processes pose significant challenge for existing computational techniques. In this paper, we approach this problem for the first time by introducing Deep Signature, a novel computationally tractable framework that characterizes complex dynamics and interatomic interactions based on their evolving trajectories. Specifically, our approach incorporates soft spectral clustering that locally aggregates cooperative dynamics to reduce the size of the system, as well as signature transform that collects iterated integrals to provide a global characterization of the non-smooth interactive dynamics. Theoretical analysis demonstrates that Deep Signature exhibits several desirable properties, including invariance to translation, near invariance to rotation, equivariance to permutation of atomic coordinates, and invariance under time reparameterization. Furthermore, experimental results on three benchmarks of biological processes verify that our approach can achieve superior performance compared to baseline methods. Biological processes are fundamentally driven by the dynamical changes of macromolecules, particularly proteins and enzymes, within their respective functional conformation spaces. Typical examples of such processes include protein-ligand binding, molecule transport and enzymatic reactions, and modern computational biologists investigate their underlying functional mechanisms by molecular dynamics (MD) simulations (Dror et al., 2012; Lewandowski et al., 2015). Built upon density functional theory (Car & Parrinello, 1985), MD has demonstrated remarkable capability in providing accurate atomic trajectories in three-dimensional (3D) conformational space and consist agreement with experimental observations (Frenkel & Smit, 2023). The computational analysis of MD data has been a subject of extensive research for decades, with the goal of characterizing systems from trajectory information.


Event-level Knowledge Editing

arXiv.org Artificial Intelligence

Knowledge editing aims at updating knowledge of large language models (LLMs) to prevent them from becoming outdated. Existing work edits LLMs at the level of factual knowledge triplets. However, natural knowledge updates in the real world come from the occurrences of new events rather than direct changes in factual triplets. In this paper, we propose a new task setting: event-level knowledge editing, which directly edits new events into LLMs and improves over conventional triplet-level editing on (1) Efficiency. A single event edit leads to updates in multiple entailed knowledge triplets. (2) Completeness. Beyond updating factual knowledge, event-level editing also requires considering the event influences and updating LLMs' knowledge about future trends. We construct a high-quality event-level editing benchmark ELKEN, consisting of 1,515 event edits, 6,449 questions about factual knowledge, and 10,150 questions about future tendencies. We systematically evaluate the performance of various knowledge editing methods and LLMs on this benchmark. We find that ELKEN poses significant challenges to existing knowledge editing approaches. Our codes and dataset are publicly released to facilitate further research.


CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning

arXiv.org Artificial Intelligence

The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavily rely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE, a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC, we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across four downstream tasks. Our code, data, and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.


LittleMu: Deploying an Online Virtual Teaching Assistant via Heterogeneous Sources Integration and Chain of Teach Prompts

arXiv.org Artificial Intelligence

Teaching assistants have played essential roles in the long history of education. However, few MOOC platforms are providing human or virtual teaching assistants to support learning for massive online students due to the complexity of real-world online education scenarios and the lack of training data. In this paper, we present a virtual MOOC teaching assistant, LittleMu with minimum labeled training data, to provide question answering and chit-chat services. Consisting of two interactive modules of heterogeneous retrieval and language model prompting, LittleMu first integrates structural, semi- and unstructured knowledge sources to support accurate answers for a wide range of questions. Then, we design delicate demonstrations named "Chain of Teach" prompts to exploit the large-scale pre-trained model to handle complex uncollected questions. Except for question answering, we develop other educational services such as knowledge-grounded chit-chat. We test the system's performance via both offline evaluation and online deployment. Since May 2020, our LittleMu system has served over 80,000 users with over 300,000 queries from over 500 courses on XuetangX MOOC platform, which continuously contributes to a more convenient and fair education. Our code, services, and dataset will be available at https://github.com/THU-KEG/VTA.


KoLA: Carefully Benchmarking World Knowledge of Large Language Models

arXiv.org Artificial Intelligence

The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For ability modeling, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks. (2) For data, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For evaluation criteria, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models and a unique self-contrast metric for automatically evaluating knowledge hallucination. We evaluate $21$ open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset and open-participation leaderboard are publicly released at https://kola.xlore.cn and will be continuously updated to provide references for developing LLMs and knowledge-related systems.


Evaluating the Performance of Large Language Models on GAOKAO Benchmark

arXiv.org Artificial Intelligence

Large language models have demonstrated remarkable performance across various natural language processing tasks; however, their efficacy in more challenging and domain-specific tasks remains less explored. This paper introduces the GAOKAO-Benchmark (GAOKAO-Bench), an intuitive benchmark that employs questions from the Chinese Gaokao examination as test samples for evaluating large language models.In order to align the evaluation results with humans as much as possible, we designed a method based on zero-shot prompts to analyze the accuracy and scoring rate of the model by dividing the questions into subjective and objective types. We evaluated the ChatGPT model on GAOKAO-Benchmark performance.Our findings reveal that the ChatGPT model excels in tackling objective questions, while also shedding light on its shortcomings and areas for improvement. To further scrutinize the model's responses, we incorporate human evaluations.In conclusion, this research contributes a robust evaluation benchmark for future large-scale language models and offers valuable insights into the limitations of such models.


ChatLog: Recording and Analyzing ChatGPT Across Time

arXiv.org Artificial Intelligence

While there are abundant researches about evaluating ChatGPT on natural language understanding and generation tasks, few studies have investigated how ChatGPT's behavior changes over time. In this paper, we collect a coarse-to-fine temporal dataset called ChatLog, consisting of two parts that update monthly and daily: ChatLog-Monthly is a dataset of 38,730 question-answer pairs collected every month including questions from both the reasoning and classification tasks. ChatLog-Daily, on the other hand, consists of ChatGPT's responses to 1000 identical questions for long-form generation every day. We conduct comprehensive automatic and human evaluation to provide the evidence for the existence of ChatGPT evolving patterns. We further analyze the unchanged characteristics of ChatGPT over time by extracting its knowledge and linguistic features. We find some stable features to improve the robustness of a RoBERTa-based detector on new versions of ChatGPT. We will continuously maintain our project at https://github.com/THU-KEG/ChatLog.