Goto

Collaborating Authors

 Li, Chunxi


Robust Meta Learning for Image based tasks

arXiv.org Artificial Intelligence

A machine learning model that generalizes well should obtain low errors on unseen test examples. Thus, if we learn an optimal model in training data, it could have better generalization performance in testing tasks. However, learning such a model is not possible in standard machine learning frameworks as the distribution of the test data is unknown. To tackle this challenge, we propose a novel robust meta-learning method, which is more robust to the image-based testing tasks which is unknown and has distribution shifts with training tasks. Our robust meta-learning method can provide robust optimal models even when data from each distribution are scarce. In experiments, we demonstrate that our algorithm not only has better generalization performance but also robust to different unknown testing tasks.


Invariant Meta Learning for Out-of-Distribution Generalization

arXiv.org Artificial Intelligence

Modern deep learning techniques have illustrated their excellent capabilities in many areas, but relies on large training data. Optimization-based meta-learning train a model on a variety tasks, such that it can solve new learning tasks using only a small number of training samples.However, these methods assumes that training and test dataare identically and independently distributed. To overcome such limitation, in this paper, we propose invariant meta learning for out-of-distribution tasks. Specifically, invariant meta learning find invariant optimal meta-initialization,and fast adapt to out-of-distribution tasks with regularization penalty. Extensive experiments demonstrate the effectiveness of our proposed invariant meta learning on out-of-distribution few-shot tasks.