Li, Chu
FPN-fusion: Enhanced Linear Complexity Time Series Forecasting Model
Li, Chu, Xiao, Pingjia, Yuan, Qiping
This study presents a novel time series prediction model, FPN-fusion, designed with linear computational complexity, demonstrating superior predictive performance compared to DLiner without increasing parameter count or computational demands. Our model introduces two key innovations: first, a Feature Pyramid Network (FPN) is employed to effectively capture time series data characteristics, bypassing the traditional decomposition into trend and seasonal components. Second, a multi-level fusion structure is developed to integrate deep and shallow features seamlessly. Empirically, FPN-fusion outperforms DLiner in 31 out of 32 test cases on eight open-source datasets, with an average reduction of 16.8% in mean squared error (MSE) and 11.8% in mean absolute error (MAE). Additionally, compared to the transformer-based PatchTST, FPN-fusion achieves 10 best MSE and 15 best MAE results, using only 8% of PatchTST's total computational load in the 32 test projects.
LabelAId: Just-in-time AI Interventions for Improving Human Labeling Quality and Domain Knowledge in Crowdsourcing Systems
Li, Chu, Zhang, Zhihan, Saugstad, Michael, Safranchik, Esteban, Kulkarni, Minchu, Huang, Xiaoyu, Patel, Shwetak, Iyer, Vikram, Althoff, Tim, Froehlich, Jon E.
Crowdsourcing platforms have transformed distributed problem-solving, yet quality control remains a persistent challenge. Traditional quality control measures, such as prescreening workers and refining instructions, often focus solely on optimizing economic output. This paper explores just-in-time AI interventions to enhance both labeling quality and domain-specific knowledge among crowdworkers. We introduce LabelAId, an advanced inference model combining Programmatic Weak Supervision (PWS) with FT-Transformers to infer label correctness based on user behavior and domain knowledge. Our technical evaluation shows that our LabelAId pipeline consistently outperforms state-of-the-art ML baselines, improving mistake inference accuracy by 36.7% with 50 downstream samples. We then implemented LabelAId into Project Sidewalk, an open-source crowdsourcing platform for urban accessibility. A between-subjects study with 34 participants demonstrates that LabelAId significantly enhances label precision without compromising efficiency while also increasing labeler confidence. We discuss LabelAId's success factors, limitations, and its generalizability to other crowdsourced science domains.