Li, Chenliang
Understanding Inverse Reinforcement Learning under Overparameterization: Non-Asymptotic Analysis and Global Optimality
Zhang, Ruijia, Zeng, Siliang, Li, Chenliang, Garcia, Alfredo, Hong, Mingyi
The goal of the Inverse reinforcement learning (IRL) task is to identify the underlying reward function and the corresponding optimal policy from a set of expert demonstrations. While most IRL algorithms' theoretical guarantees rely on a linear reward structure, we aim to extend the theoretical understanding of IRL to scenarios where the reward function is parameterized by neural networks. Meanwhile, conventional IRL algorithms usually adopt a nested structure, leading to computational inefficiency, especially in high-dimensional settings. To address this problem, we propose the first two-timescale single-loop IRL algorithm under neural network parameterized reward and provide a non-asymptotic convergence analysis under overparameterization. Although prior optimality results for linear rewards do not apply, we show that our algorithm can identify the globally optimal reward and policy under certain neural network structures. This is the first IRL algorithm with a non-asymptotic convergence guarantee that provably achieves global optimality in neural network settings.
WritingBench: A Comprehensive Benchmark for Generative Writing
Wu, Yuning, Mei, Jiahao, Yan, Ming, Li, Chenliang, Lai, Shaopeng, Ren, Yuran, Wang, Zijia, Zhang, Ji, Wu, Mengyue, Jin, Qin, Huang, Fei
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
MM-StoryAgent: Immersive Narrated Storybook Video Generation with a Multi-Agent Paradigm across Text, Image and Audio
Xu, Xuenan, Mei, Jiahao, Li, Chenliang, Wu, Yuning, Yan, Ming, Lai, Shaopeng, Zhang, Ji, Wu, Mengyue
The rapid advancement of large language models (LLMs) and artificial intelligence-generated content (AIGC) has accelerated AI-native applications, such as AI-based storybooks that automate engaging story production for children. However, challenges remain in improving story attractiveness, enriching storytelling expressiveness, and developing open-source evaluation benchmarks and frameworks. Therefore, we propose and opensource MM-StoryAgent, which creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio. MM-StoryAgent designs a multi-agent framework that employs LLMs and diverse expert tools (generative models and APIs) across several modalities to produce expressive storytelling videos. The framework enhances story attractiveness through a multi-stage writing pipeline. In addition, it improves the immersive storytelling experience by integrating sound effects with visual, music and narrative assets. MM-StoryAgent offers a flexible, open-source platform for further development, where generative modules can be substituted. Both objective and subjective evaluation regarding textual story quality and alignment between modalities validate the effectiveness of our proposed MM-StoryAgent system. The demo and source code are available.
Origin-Destination Demand Prediction: An Urban Radiation and Attraction Perspective
Ma, Xuan, Bao, Zepeng, Zhong, Ming, Zhu, Yuanyuan, Li, Chenliang, Jiang, Jiawei, Li, Qing, Qian, Tieyun
--In recent years, origin-destination (OD) demand prediction has gained significant attention for its profound implications in urban development. Existing deep learning methods primarily focus on the spatial or temporal dependency between regions yet neglecting regions' fundamental functional difference. Though physical methods have characterised regions' functions by their radiation and attraction capacities, these functions are defined on numerical factors like population without considering regions' intrinsic nominal attributes, e.g., a region is a residential or industrial district. Moreover, the complicated relationships between two types of capacities, e.g., the radiation capacity of a residential district in the morning will be transformed into the attraction capacity in the evening, are totally missing from physical methods. In this paper, we not only generalize the physical radiation and attraction capacities into the deep learning framework with the extended capability to fulfil regions' functions, but also present a new model that captures the relationships between two types of capacities. Specifically, we first model regions' radiation and attraction capacities using a bilateral branch network, each equipped with regions' attribute representations. We then describe the transformation relationship of different capacities within the same region using a parameter generation method. We finally unveil the competition relationship of different regions with the same attraction capacity through adversarial learning. Extensive experiments on two city datasets demonstrate the consistent improvements of our method over the state-of-the-art baselines, as well as the good explainability of regions' functions using their nominal attributes. With the spread of ride-hailing platforms like Uber and Didi, intelligent transportation systems have emerged as a vibrant research domain [1]-[3]. These systems are designed to offer convenient ride services, improve public transportation efficiency through proactive order assignment, and optimize profitability by identifying high-profit routes based on historical passenger demands [4]. Among the wide spectrum of applications, traffic demand forecasting is the focal point due to its vital role in urban development, traffic control, and route planning [5]-[11]. The conventional task in this field involves the prediction of the potential number of passenger demands in a specific region [10], [12], [13]. However, such a task is unable to capture associations in inter-regional flows. Tieyun Qian is the corresponding author. Figure 1: (a) An illustration of the region partition in Manhattan, New Y ork, and (b) and (c) are visualizations of the taxi outflow and inflow demand in a designated region with a red mark in (a) on 2019-01-17, respectively.
Efficient Sparse Attention needs Adaptive Token Release
Zhang, Chaoran, Zou, Lixin, Luo, Dan, Tang, Min, Luo, Xiangyang, Li, Zihao, Li, Chenliang
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide array of text-centric tasks. However, their `large' scale introduces significant computational and storage challenges, particularly in managing the key-value states of the transformer, which limits their wider applicability. Therefore, we propose to adaptively release resources from caches and rebuild the necessary key-value states. Particularly, we accomplish this by a lightweight controller module to approximate an ideal top-$K$ sparse attention. This module retains the tokens with the highest top-$K$ attention weights and simultaneously rebuilds the discarded but necessary tokens, which may become essential for future decoding. Comprehensive experiments in natural language generation and modeling reveal that our method is not only competitive with full attention in terms of performance but also achieves a significant throughput improvement of up to 221.8%. The code for replication is available on the https://github.com/WHUIR/ADORE.
Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback
Li, Chenliang, Zeng, Siliang, Liao, Zeyi, Li, Jiaxiang, Kang, Dongyeop, Garcia, Alfredo, Hong, Mingyi
Aligning human preference and value is an important requirement for building contemporary foundation models and embodied AI. However, popular approaches such as reinforcement learning with human feedback (RLHF) break down the task into successive stages, such as supervised fine-tuning (SFT), reward modeling (RM), and reinforcement learning (RL), each performing one specific learning task. Such a sequential approach results in serious issues such as significant under-utilization of data and distribution mismatch between the learned reward model and generated policy, which eventually lead to poor alignment performance. We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF), capable of integrating both human preference and demonstration to train reward models and the policy. The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms such as RLHF and Directly Policy Optimization (DPO), and only requires minor changes to the existing alignment pipelines. We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo. We observe that the proposed solutions outperform the existing alignment algorithms such as RLHF and DPO by large margins, especially when the amount of high-quality preference data is relatively limited.
Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment
Li, Jiaxiang, Zeng, Siliang, Wai, Hoi-To, Li, Chenliang, Garcia, Alfredo, Hong, Mingyi
Aligning human preference and value is an important requirement for contemporary foundation models. State-of-the-art techniques such as Reinforcement Learning from Human Feedback (RLHF) often consist of two stages: 1) supervised fine-tuning (SFT), where the model is fine-tuned by learning from human demonstration data; 2) Preference learning, where preference data is used to learn a reward model, which is in turn used by a reinforcement learning (RL) step to fine-tune the model. Such reward model serves as a proxy to human preference, and it is critical to guide the RL step towards improving the model quality. In this work, we argue that the SFT stage significantly benefits from learning a reward model as well. Instead of using the human demonstration data directly via supervised learning, we propose to leverage an Inverse Reinforcement Learning (IRL) technique to (explicitly or implicitly) build an reward model, while learning the policy model. This approach leads to new SFT algorithms that are not only efficient to implement, but also promote the ability to distinguish between the preferred and non-preferred continuations. Moreover, we identify a connection between the proposed IRL based approach, and certain self-play approach proposed recently, and showed that self-play is a special case of modeling a reward-learning agent. Theoretically, we show that the proposed algorithms converge to the stationary solutions of the IRL problem. Empirically, we align 1B and 7B models using proposed methods and evaluate them on a reward benchmark model and the HuggingFace Open LLM Leaderboard. The proposed methods show significant performance improvement over existing SFT approaches. Our results indicate that it is beneficial to explicitly or implicitly leverage reward learning throughout the entire alignment process.
RoleInteract: Evaluating the Social Interaction of Role-Playing Agents
Chen, Hongzhan, Chen, Hehong, Yan, Ming, Xu, Wenshen, Gao, Xing, Shen, Weizhou, Quan, Xiaojun, Li, Chenliang, Zhang, Ji, Huang, Fei, Zhou, Jingren
Large language models (LLMs) have advanced the development of various AI conversational agents, including role-playing conversational agents that mimic diverse characters and human behaviors. While prior research has predominantly focused on enhancing the conversational capability, role-specific knowledge, and stylistic attributes of these agents, there has been a noticeable gap in assessing their social intelligence. In this paper, we introduce RoleInteract, the first benchmark designed to systematically evaluate the sociality of role-playing conversational agents at both individual and group levels of social interactions. The benchmark is constructed from a variety of sources and covers a wide range of 500 characters and over 6,000 question prompts and 30,800 multi-turn role-playing utterances. We conduct comprehensive evaluations on this benchmark using mainstream open-source and closed-source LLMs. We find that agents excelling in individual level does not imply their proficiency in group level. Moreover, the behavior of individuals may drift as a result of the influence exerted by other agents within the group. Experimental results on RoleInteract confirm its significance as a testbed for assessing the social interaction of role-playing conversational agents. The benchmark is publicly accessible at https://github.com/X-PLUG/RoleInteract.
Small LLMs Are Weak Tool Learners: A Multi-LLM Agent
Shen, Weizhou, Li, Chenliang, Chen, Hongzhan, Yan, Ming, Quan, Xiaojun, Chen, Hehong, Zhang, Ji, Huang, Fei
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.
Efficient Vision-and-Language Pre-training with Text-Relevant Image Patch Selection
Ye, Wei, Jiang, Chaoya, Xu, Haiyang, Ye, Chenhao, Li, Chenliang, Yan, Ming, Zhang, Shikun, Huang, Songhang, Huang, Fei
Vision Transformers (ViTs) have become increasingly popular in large-scale Vision and Language Pre-training (VLP) models. Although previous VLP research has demonstrated the efficacy of ViTs, these efforts still struggle with computational inefficiencies caused by lengthy visual sequences. To address this challenge, we introduce an efficient VLP approach called TRIPS, which stands for Text-Relevant Image Patch Selection. TRIPS progressively reduces the visual sequence using a text-guided patch-selection layer in the visual backbone, thereby accelerating both training and inference processes. This patch-selection layer dynamically computes text-dependent visual attention, enabling it to identify attentive image tokens with text guidance and fuse inattentive ones in an end-to-end fashion. Importantly, TRIPS does not add any extra parameters and generalizes to most ViT-based VLP models. We incorporate TRIPS into three representative VLP models covering single-stream, dual-stream, and generative paradigms, and conduct extensive experiments on five widely-used multi-modal benchmark datasets. Our experimental results reveal that TRIPS delivers a 40% speedup, while maintaining competitive or superior performance on downstream tasks.