Goto

Collaborating Authors

 Li, Chengtao


AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design

arXiv.org Artificial Intelligence

Structure-based drug design (SBDD), which aims to generate molecules that can bind tightly to the target protein, is an essential problem in drug discovery, and previous approaches have achieved initial success. However, most existing methods still suffer from invalid local structure or unrealistic conformation issues, which are mainly due to the poor leaning of bond angles or torsional angles. To alleviate these problems, we propose AUTODIFF, a diffusion-based fragment-wise autoregressive generation model. Specifically, we design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first, then we encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling. In addition, we also improve the evaluation framework of SBDD by constraining the molecular weights of the generated molecules in the same range, together with some new metrics, which make the evaluation more fair and practical. Extensive experiments on CrossDocked2020 demonstrate that our approach outperforms the existing models in generating realistic molecules with valid structures and conformations while maintaining high binding affinity.


Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

arXiv.org Artificial Intelligence

Retrosynthetic planning is a critical task in organic chemistry which identifies a series of reactions that can lead to the synthesis of a target product. The vast number of possible chemical transformations makes the size of the search space very big, and retrosynthetic planning is challenging even for experienced chemists. However, existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality. In this paper, we propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently. It maintains the search as an AND-OR tree, and learns a neural search bias with off-policy data. Then guided by this neural network, it performs best-first search efficiently during new planning episodes. Experiments on benchmark USPTO datasets show that, our proposed method outperforms existing state-of-the-art with respect to both the success rate and solution quality, while being more efficient at the same time.


Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling

Neural Information Processing Systems

We study probability measures induced by set functions with constraints. Such measures arise in a variety of real-world settings, where prior knowledge, resource limitations, or other pragmatic considerations impose constraints. We consider the task of rapidly sampling from such constrained measures, and develop fast Markov chain samplers for them. Our first main result is for MCMC sampling from Strongly Rayleigh (SR) measures, for which we present sharp polynomial bounds on the mixing time. As a corollary, this result yields a fast mixing sampler for Determinantal Point Processes (DPPs), yielding (to our knowledge) the first provably fast MCMC sampler for DPPs since their inception over four decades ago.


Improving Sequential Determinantal Point Processes for Supervised Video Summarization

arXiv.org Machine Learning

It is now much easier than ever before to produce videos. While the ubiquitous video data is a great source for information discovery and extraction, the computational challenges are unparalleled. Automatically summarizing the videos has become a substantial need for browsing, searching, and indexing visual content. This paper is in the vein of supervised video summarization using sequential determinantal point process (SeqDPP), which models diversity by a probabilistic distribution. We improve this model in two folds. In terms of learning, we propose a large-margin algorithm to address the exposure bias problem in SeqDPP. In terms of modeling, we design a new probabilistic distribution such that, when it is integrated into SeqDPP, the resulting model accepts user input about the expected length of the summary. Moreover, we also significantly extend a popular video summarization dataset by 1) more egocentric videos, 2) dense user annotations, and 3) a refined evaluation scheme. We conduct extensive experiments on this dataset (about 60 hours of videos in total) and compare our approach to several competitive baselines.


Representation Learning on Graphs with Jumping Knowledge Networks

arXiv.org Artificial Intelligence

Recent deep learning approaches for representation learning on graphs follow a neighborhood aggregation procedure. We analyze some important properties of these models, and propose a strategy to overcome those. In particular, the range of "neighboring" nodes that a node's representation draws from strongly depends on the graph structure, analogous to the spread of a random walk. To adapt to local neighborhood properties and tasks, we explore an architecture -- jumping knowledge (JK) networks -- that flexibly leverages, for each node, different neighborhood ranges to enable better structure-aware representation. In a number of experiments on social, bioinformatics and citation networks, we demonstrate that our model achieves state-of-the-art performance. Furthermore, combining the JK framework with models like Graph Convolutional Networks, GraphSAGE and Graph Attention Networks consistently improves those models' performance.


Robust GANs against Dishonest Adversaries

arXiv.org Machine Learning

Robustness of deep learning models is a property that has recently gained increasing attention. We formally define a notion of robustness for generative adversarial models, and show that, perhaps surprisingly, the GAN in its original form is not robust. Indeed, the discriminator in GANs may be viewed as merely offering "teaching feedback". Our notion of robustness relies on a dishonest discriminator, or noisy, adversarial interference with its feedback. We explore, theoretically and empirically, the effect of model and training properties on this robustness. In particular, we show theoretical conditions for robustness that are supported by empirical evidence. We also test the effect of regularization. Our results suggest variations of GANs that are indeed more robust to noisy attacks, and have overall more stable training behavior.


Batched High-dimensional Bayesian Optimization via Structural Kernel Learning

arXiv.org Machine Learning

Optimization of high-dimensional black-box functions is an extremely challenging problem. While Bayesian optimization has emerged as a popular approach for optimizing black-box functions, its applicability has been limited to low-dimensional problems due to its computational and statistical challenges arising from high-dimensional settings. In this paper, we propose to tackle these challenges by (1) assuming a latent additive structure in the function and inferring it properly for more efficient and effective BO, and (2) performing multiple evaluations in parallel to reduce the number of iterations required by the method. Our novel approach learns the latent structure with Gibbs sampling and constructs batched queries using determinantal point processes. Experimental validations on both synthetic and real-world functions demonstrate that the proposed method outperforms the existing state-of-the-art approaches.


Polynomial time algorithms for dual volume sampling

Neural Information Processing Systems

We study dual volume sampling, a method for selecting k columns from an n*m short and wide matrix (n <= k <= m) such that the probability of selection is proportional to the volume spanned by the rows of the induced submatrix. This method was proposed by Avron and Boutsidis (2013), who showed it to be a promising method for column subset selection and its multiple applications. However, its wider adoption has been hampered by the lack of polynomial time sampling algorithms. We remove this hindrance by developing an exact (randomized) polynomial time sampling algorithm as well as its derandomization. Thereafter, we study dual volume sampling via the theory of real stable polynomials and prove that its distribution satisfies the โ€œStrong Rayleighโ€ property. This result has numerous consequences, including a provably fast-mixing Markov chain sampler that makes dual volume sampling much more attractive to practitioners. This sampler is closely related to classical algorithms for popular experimental design methods that are to date lacking theoretical analysis but are known to empirically work well.


Polynomial Time Algorithms for Dual Volume Sampling

arXiv.org Machine Learning

We study dual volume sampling, a method for selecting k columns from an n x m short and wide matrix (n <= k <= m) such that the probability of selection is proportional to the volume spanned by the rows of the induced submatrix. This method was proposed by Avron and Boutsidis (2013), who showed it to be a promising method for column subset selection and its multiple applications. However, its wider adoption has been hampered by the lack of polynomial time sampling algorithms. We remove this hindrance by developing an exact (randomized) polynomial time sampling algorithm as well as its derandomization. Thereafter, we study dual volume sampling via the theory of real stable polynomials and prove that its distribution satisfies the "Strong Rayleigh" property. This result has numerous consequences, including a provably fast-mixing Markov chain sampler that makes dual volume sampling much more attractive to practitioners. This sampler is closely related to classical algorithms for popular experimental design methods that are to date lacking theoretical analysis but are known to empirically work well.


Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling

arXiv.org Machine Learning

We study probability measures induced by set functions with constraints. Such measures arise in a variety of real-world settings, where prior knowledge, resource limitations, or other pragmatic considerations impose constraints. We consider the task of rapidly sampling from such constrained measures, and develop fast Markov chain samplers for them. Our first main result is for MCMC sampling from Strongly Rayleigh (SR) measures, for which we present sharp polynomial bounds on the mixing time. As a corollary, this result yields a fast mixing sampler for Determinantal Point Processes (DPPs), yielding (to our knowledge) the first provably fast MCMC sampler for DPPs since their inception over four decades ago. Beyond SR measures, we develop MCMC samplers for probabilistic models with hard constraints and identify sufficient conditions under which their chains mix rapidly. We illustrate our claims by empirically verifying the dependence of mixing times on the key factors governing our theoretical bounds.