Goto

Collaborating Authors

 Li, Chenglong


Large Language Model Guided Progressive Feature Alignment for Multimodal UAV Object Detection

arXiv.org Artificial Intelligence

Existing multimodal UAV object detection methods often overlook the impact of semantic gaps between modalities, which makes it difficult to achieve accurate semantic and spatial alignments, limiting detection performance. To address this problem, we propose a Large Language Model (LLM) guided Progressive feature Alignment Network called LPANet, which leverages the semantic features extracted from a large language model to guide the progressive semantic and spatial alignment between modalities for multimodal UAV object detection. To employ the powerful semantic representation of LLM, we generate the fine-grained text descriptions of each object category by ChatGPT and then extract the semantic features using the large language model MPNet. Based on the semantic features, we guide the semantic and spatial alignments in a progressive manner as follows. First, we design the Semantic Alignment Module (SAM) to pull the semantic features and multimodal visual features of each object closer, alleviating the semantic differences of objects between modalities. Second, we design the Explicit Spatial alignment Module (ESM) by integrating the semantic relations into the estimation of feature-level offsets, alleviating the coarse spatial misalignment between modalities. Finally, we design the Implicit Spatial alignment Module (ISM), which leverages the cross-modal correlations to aggregate key features from neighboring regions to achieve implicit spatial alignment. Comprehensive experiments on two public multimodal UAV object detection datasets demonstrate that our approach outperforms state-of-the-art multimodal UAV object detectors.


Inference-to-complete: A High-performance and Programmable Data-plane Co-processor for Neural-network-driven Traffic Analysis

arXiv.org Artificial Intelligence

Neural-networks-driven intelligent data-plane (NN-driven IDP) is becoming an emerging topic for excellent accuracy and high performance. Meanwhile we argue that NN-driven IDP should satisfy three design goals: the flexibility to support various NNs models, the low-latency-high-throughput inference performance, and the data-plane-unawareness harming no performance and functionality. Unfortunately, existing work either over-modify NNs for IDP, or insert inline pipelined accelerators into the data-plane, failing to meet the flexibility and unawareness goals. In this paper, we propose Kaleidoscope, a flexible and high-performance co-processor located at the bypass of the data-plane. To address the challenge of meeting three design goals, three key techniques are presented. The programmable run-to-completion accelerators are developed for flexible inference. To further improve performance, we design a scalable inference engine which completes low-latency and low-cost inference for the mouse flows, and perform complex NNs with high-accuracy for the elephant flows. Finally, raw-bytes-based NNs are introduced, which help to achieve unawareness. We prototype Kaleidoscope on both FPGA and ASIC library. In evaluation on six NNs models, Kaleidoscope reaches 256-352 ns inference latency and 100 Gbps throughput with negligible influence on the data-plane. The on-board tested NNs perform state-of-the-art accuracy among other NN-driven IDP, exhibiting the the significant impact of flexibility on enhancing traffic analysis accuracy.


An Empirical Study of Mamba-based Pedestrian Attribute Recognition

arXiv.org Artificial Intelligence

Current strong pedestrian attribute recognition models are developed based on Transformer networks, which are computationally heavy. Recently proposed models with linear complexity (e.g., Mamba) have garnered significant attention and have achieved a good balance between accuracy and computational cost across a variety of visual tasks. Relevant review articles also suggest that while these models can perform well on some pedestrian attribute recognition datasets, they are generally weaker than the corresponding Transformer models. To further tap into the potential of the novel Mamba architecture for PAR tasks, this paper designs and adapts Mamba into two typical PAR frameworks, i.e., the text-image fusion approach and pure vision Mamba multi-label recognition framework. It is found that interacting with attribute tags as additional input does not always lead to an improvement, specifically, Vim can be enhanced, but VMamba cannot. This paper further designs various hybrid Mamba-Transformer variants and conducts thorough experimental validations. These experimental results indicate that simply enhancing Mamba with a Transformer does not always lead to performance improvements but yields better results under certain settings. We hope this empirical study can further inspire research in Mamba for PAR, and even extend into the domain of multi-label recognition, through the design of these network structures and comprehensive experimentation. The source code of this work will be released at \url{https://github.com/Event-AHU/OpenPAR}


State Space Model for New-Generation Network Alternative to Transformers: A Survey

arXiv.org Artificial Intelligence

In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.


Morphological Profiling for Drug Discovery in the Era of Deep Learning

arXiv.org Artificial Intelligence

Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high-throughput. These efforts have facilitated understanding of compound mechanism-of-action (MOA), drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.


Group Multi-View Transformer for 3D Shape Analysis with Spatial Encoding

arXiv.org Artificial Intelligence

In recent years, the results of view-based 3D shape recognition methods have saturated, and models with excellent performance cannot be deployed on memory-limited devices due to their huge size of parameters. To address this problem, we introduce a compression method based on knowledge distillation for this field, which largely reduces the number of parameters while preserving model performance as much as possible. Specifically, to enhance the capabilities of smaller models, we design a high-performing large model called Group Multi-view Vision Transformer (GMViT). In GMViT, the view-level ViT first establishes relationships between view-level features. Additionally, to capture deeper features, we employ the grouping module to enhance view-level features into group-level features. Finally, the group-level ViT aggregates group-level features into complete, well-formed 3D shape descriptors. Notably, in both ViTs, we introduce spatial encoding of camera coordinates as innovative position embeddings. Furthermore, we propose two compressed versions based on GMViT, namely GMViT-simple and GMViT-mini. To enhance the training effectiveness of the small models, we introduce a knowledge distillation method throughout the GMViT process, where the key outputs of each GMViT component serve as distillation targets. Extensive experiments demonstrate the efficacy of the proposed method. The large model GMViT achieves excellent 3D classification and retrieval results on the benchmark datasets ModelNet, ShapeNetCore55, and MCB. The smaller models, GMViT-simple and GMViT-mini, reduce the parameter size by 8 and 17.6 times, respectively, and improve shape recognition speed by 1.5 times on average, while preserving at least 90% of the classification and retrieval performance.


Pedestrian Attribute Recognition via CLIP based Prompt Vision-Language Fusion

arXiv.org Artificial Intelligence

Existing pedestrian attribute recognition (PAR) algorithms adopt pre-trained CNN (e.g., ResNet) as their backbone network for visual feature learning, which might obtain sub-optimal results due to the insufficient employment of the relations between pedestrian images and attribute labels. In this paper, we formulate PAR as a vision-language fusion problem and fully exploit the relations between pedestrian images and attribute labels. Specifically, the attribute phrases are first expanded into sentences, and then the pre-trained vision-language model CLIP is adopted as our backbone for feature embedding of visual images and attribute descriptions. The contrastive learning objective connects the vision and language modalities well in the CLIP-based feature space, and the Transformer layers used in CLIP can capture the long-range relations between pixels. Then, a multi-modal Transformer is adopted to fuse the dual features effectively and feed-forward network is used to predict attributes. To optimize our network efficiently, we propose the region-aware prompt tuning technique to adjust very few parameters (i.e., only the prompt vectors and classification heads) and fix both the pre-trained VL model and multi-modal Transformer. Our proposed PAR algorithm only adjusts 0.75% learnable parameters compared with the fine-tuning strategy. It also achieves new state-of-the-art performance on both standard and zero-shot settings for PAR, including RAPv1, RAPv2, WIDER, PA100K, and PETA-ZS, RAP-ZS datasets. The source code and pre-trained models will be released on https://github.com/Event-AHU/OpenPAR.


Structural Information Guided Multimodal Pre-training for Vehicle-centric Perception

arXiv.org Artificial Intelligence

Understanding vehicles in images is important for various applications such as intelligent transportation and self-driving system. Existing vehicle-centric works typically pre-train models on large-scale classification datasets and then fine-tune them for specific downstream tasks. However, they neglect the specific characteristics of vehicle perception in different tasks and might thus lead to sub-optimal performance. To address this issue, we propose a novel vehicle-centric pre-training framework called VehicleMAE, which incorporates the structural information including the spatial structure from vehicle profile information and the semantic structure from informative high-level natural language descriptions for effective masked vehicle appearance reconstruction. To be specific, we explicitly extract the sketch lines of vehicles as a form of the spatial structure to guide vehicle reconstruction. The more comprehensive knowledge distilled from the CLIP big model based on the similarity between the paired/unpaired vehicle image-text sample is further taken into consideration to help achieve a better understanding of vehicles. A large-scale dataset is built to pre-train our model, termed Autobot1M, which contains about 1M vehicle images and 12693 text information. Extensive experiments on four vehicle-based downstream tasks fully validated the effectiveness of our VehicleMAE. The source code and pre-trained models will be released at https://github.com/Event-AHU/VehicleMAE.


Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting

arXiv.org Artificial Intelligence

Crowd counting is a fundamental yet challenging problem, which desires rich information to generate pixel-wise crowd density maps. However, most previous methods only utilized the limited information of RGB images and may fail to discover the potential pedestrians in unconstrained environments. In this work, we find that incorporating optical and thermal information can greatly help to recognize pedestrians. To promote future researches in this field, we introduce a large-scale RGBT Crowd Counting (RGBT-CC) benchmark, which contains 2,030 pairs of RGB-thermal images with 138,389 annotated people. Furthermore, to facilitate the multimodal crowd counting, we propose a cross-modal collaborative representation learning framework, which consists of multiple modality-specific branches, a modality-shared branch, and an Information Aggregation-Distribution Module (IADM) to fully capture the complementary information of different modalities. Specifically, our IADM incorporates two collaborative information transfer components to dynamically enhance the modality-shared and modality-specific representations with a dual information propagation mechanism. Extensive experiments conducted on the RGBT-CC benchmark demonstrate the effectiveness of our framework for RGBT crowd counting. Moreover, the proposed approach is universal for multimodal crowd counting and is also capable to achieve superior performance on the ShanghaiTechRGBD dataset.


Learning Patch-Based Dynamic Graph for Visual Tracking

AAAI Conferences

Existing visual tracking methods usually localize the object with a bounding box, in which the foreground object trackers/detectors are often disturbed by the introduced background information. To handle this problem, we aim to learn a more robust object representation for visual tracking. In particular, the tracked object is represented with a graph structure (i.e., a set of non-overlapping image patches), in which the weight of each node (patch) indicates how likely it belongs to the foreground and edges are also weighed for indicating the appearance compatibility of two neighboring nodes. This graph is dynamically learnt (i.e., the nodes and edges received weights) and applied in object tracking and model updating. We constrain the graph learning from two aspects: i) the global low-rank structure over all nodes and ii) the local sparseness of node neighbors. During the tracking process, our method performs the following steps at each frame. First, the graph is initialized by assigning either 1 or 0 to the weights of some image patches according to the predicted bounding box. Second, the graph is optimized through designing a new ALM (Augmented Lagrange Multiplier) based algorithm. Third, the object feature representation is updated by imposing the weights of patches on the extracted image features. The object location is finally predicted by adopting the Struck tracker. Extensive experiments show that our approach outperforms the state-of-the-art tracking methods on two standard benchmarks, i.e., OTB100 and NUS-PRO.