Plotting

 Li, Cheng


Automatic Prompt Rewriting for Personalized Text Generation

arXiv.org Artificial Intelligence

Facilitated by large language models (LLMs), personalized text generation has become a rapidly growing research direction. Most existing studies focus on designing specialized models for a particular domain, or they require fine-tuning the LLMs to generate personalized text. We consider a typical scenario in which the large language model, which generates personalized output, is frozen and can only be accessed through APIs. Under this constraint, all one can do is to improve the input text (i.e., text prompts) sent to the LLM, a procedure that is usually done manually. In this paper, we propose a novel method to automatically revise prompts for personalized text generation. The proposed method takes the initial prompts generated by a state-of-the-art, multistage framework for personalized generation and rewrites a few critical components that summarize and synthesize the personal context. The prompt rewriter employs a training paradigm that chains together supervised learning (SL) and reinforcement learning (RL), where SL reduces the search space of RL and RL facilitates end-to-end training of the rewriter. Using datasets from three representative domains, we demonstrate that the rewritten prompts outperform both the original prompts and the prompts optimized via supervised learning or reinforcement learning alone. In-depth analysis of the rewritten prompts shows that they are not only human readable, but also able to guide manual revision of prompts when there is limited resource to employ reinforcement learning to train the prompt rewriter, or when it is costly to deploy an automatic prompt rewriter for inference.


RestGPT: Connecting Large Language Models with Real-World RESTful APIs

arXiv.org Artificial Intelligence

Tool-augmented large language models (LLMs) have achieved remarkable progress in tackling a broad range of tasks. However, existing methods are mainly restricted to specifically designed tools and fail to fulfill complex instructions, having great limitations when confronted with real-world scenarios. In this paper, we explore a more realistic scenario by connecting LLMs with RESTful APIs, which adhere to the widely adopted REST software architectural style for web service development. To address the practical challenges of tackling complex instructions, we propose RestGPT, which exploits the power of LLMs and conducts a coarse-to-fine online planning mechanism to enhance the abilities of task decomposition and API selection. RestGPT also contains an API executor tailored for calling RESTful APIs, which can meticulously formulate parameters and parse API responses. To fully evaluate the performance of RestGPT, we propose RestBench, a high-quality benchmark which consists of two real-world scenarios and human-annotated instructions with gold solution paths. Experiments show that RestGPT is able to achieve impressive results in complex tasks and has strong robustness, which paves a new way towards AGI.


ChatHaruhi: Reviving Anime Character in Reality via Large Language Model

arXiv.org Artificial Intelligence

Role-playing chatbots built on large language models have drawn interest, but better techniques are needed to enable mimicking specific fictional characters. We propose an algorithm that controls language models via an improved prompt and memories of the character extracted from scripts. We construct ChatHaruhi, a dataset covering 32 Chinese / English TV / anime characters with over 54k simulated dialogues. Both automatic and human evaluations show our approach improves role-playing ability over baselines. Code and data are available at https://github.com/LC1332/Chat-Haruhi-Suzumiya .


Teach LLMs to Personalize -- An Approach inspired by Writing Education

arXiv.org Artificial Intelligence

Personalized text generation is an emerging research area that has attracted much attention in recent years. Most studies in this direction focus on a particular domain by designing bespoke features or models. In this work, we propose a general approach for personalized text generation using large language models (LLMs). Inspired by the practice of writing education, we develop a multistage and multitask framework to teach LLMs for personalized generation. In writing instruction, the task of writing from sources is often decomposed into multiple steps that involve finding, evaluating, summarizing, synthesizing, and integrating information. Analogously, our approach to personalized text generation consists of multiple stages: retrieval, ranking, summarization, synthesis, and generation. In addition, we introduce a multitask setting that helps the model improve its generation ability further, which is inspired by the observation in education that a student's reading proficiency and writing ability are often correlated. We evaluate our approach on three public datasets, each of which covers a different and representative domain. Our results show significant improvements over a variety of baselines.


Understanding INT4 Quantization for Transformer Models: Latency Speedup, Composability, and Failure Cases

arXiv.org Artificial Intelligence

Improving the deployment efficiency of transformer-based language models has been challenging given their high computation and memory cost. While INT8 quantization has recently been shown to be effective in reducing both the memory cost and latency while preserving model accuracy, it remains unclear whether we can leverage INT4 (which doubles peak hardware throughput) to achieve further latency improvement. In this study, we explore the feasibility of employing INT4 weight and activation (W4A4) quantization for language models. Our findings indicate that W4A4 quantization introduces no to negligible accuracy degradation for encoder-only and encoder-decoder models, but causes a significant accuracy drop for decoder-only models. To materialize the performance gain using W4A4, we develop a highly optimized end-to-end W4A4 encoder inference pipeline supporting different quantization strategies. Our INT4 pipeline is $8.5\times$ faster for latency-oriented scenarios and up to $3\times$ for throughput-oriented scenarios compared to the inference of FP16, and improves the SOTA BERT INT8 performance from FasterTransformer by up to $1.7\times$. We provide insights into the failure cases when applying W4A4 to decoder-only models, and further explore the compatibility of INT4 quantization with other compression methods, like pruning and layer reduction.


ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation

arXiv.org Artificial Intelligence

Post-training quantization (PTQ) has emerged as a promising technique for mitigating memory consumption and computational costs in large language models (LLMs). However, a systematic examination of various quantization schemes, model families, and quantization bit precision has been absent from the literature. In this paper, we conduct a comprehensive analysis of these factors by investigating the effects of PTQ on weight-only, activation-only, and weight-and-activation quantization using diverse methods such as round-to-nearest (RTN), GPTQ, ZeroQuant, and their variants. We apply these methods to two distinct model families with parameters ranging from 125M to 176B. Our contributions include: (1) a sensitivity analysis revealing that activation quantization is generally more susceptible to weight quantization, with smaller models often outperforming larger models in terms of activation quantization; (2) an evaluation and comparison of existing PTQ methods to optimize model size reduction while minimizing the impact on accuracy, revealing that none of the current methods can achieve the original model quality for quantization with either INT4-weight or INT4-weight-and-INT8-activation; (3) based on these insights, we propose an optimized method called Low-Rank Compensation (LoRC), which employs low-rank matrices to enhance model quality recovery with a minimal increase in model size.


Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production

arXiv.org Artificial Intelligence

Hydrothermal carbonization (HTC) is a process that converts biomass into versatile hydrochar without the need for prior drying. The physicochemical properties of hydrochar are influenced by biomass properties and processing parameters, making it challenging to optimize for specific applications through trial-and-error experiments. To save time and money, machine learning can be used to develop a model that characterizes hydrochar produced from different biomass sources under varying reaction processing parameters. Thus, this study aims to develop an inclusive model to characterize hydrochar using a database covering a range of biomass types and reaction processing parameters. The quality and quantity of hydrochar are predicted using two models (decision tree regression and support vector regression). The decision tree regression model outperforms the support vector regression model in terms of forecast accuracy (R2 > 0.88, RMSE < 6.848, and MAE < 4.718). Using an evolutionary algorithm, optimum inputs are identified based on cost functions provided by the selected model to optimize hydrochar for energy production, soil amendment, and pollutant adsorption, resulting in hydrochar yields of 84.31%, 84.91%, and 80.40%, respectively. The feature importance analysis reveals that biomass ash/carbon content and operating temperature are the primary factors affecting hydrochar production in the HTC process.


Understand Data Preprocessing for Effective End-to-End Training of Deep Neural Networks

arXiv.org Artificial Intelligence

In this paper, we primarily focus on understanding the data preprocessing pipeline for DNN Training in the public cloud. First, we run experiments to test the performance implications of the two major data preprocessing methods using either raw data or record files. The preliminary results show that data preprocessing is a clear bottleneck, even with the most efficient software and hardware configuration enabled by NVIDIA DALI, a high-optimized data preprocessing library. Second, we identify the potential causes, exercise a variety of optimization methods, and present their pros and cons. We hope this work will shed light on the new co-design of ``data storage, loading pipeline'' and ``training framework'' and flexible resource configurations between them so that the resources can be fully exploited and performance can be maximized.


Few-shot Class-incremental Learning for Cross-domain Disease Classification

arXiv.org Artificial Intelligence

The ability to incrementally learn new classes from limited samples is crucial to the development of artificial intelligence systems for real clinical application. Although existing incremental learning techniques have attempted to address this issue, they still struggle with only few labeled data, particularly when the samples are from varied domains. In this paper, we explore the cross-domain few-shot incremental learning (CDFSCIL) problem. CDFSCIL requires models to learn new classes from very few labeled samples incrementally, and the new classes may be vastly different from the target space. To counteract this difficulty, we propose a cross-domain enhancement constraint and cross-domain data augmentation method. Experiments on MedMNIST show that the classification performance of this method is better than other similar incremental learning methods.


BiFeat: Supercharge GNN Training via Graph Feature Quantization

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) is a promising approach for applications with nonEuclidean data. However, training GNNs on large scale graphs with hundreds of millions nodes is both resource and time consuming. Different from DNNs, GNNs usually have larger memory footprints, and thus the GPU memory capacity and PCIe bandwidth are the main resource bottlenecks in GNN training. To address this problem, we present BiFeat: a graph feature quantization methodology to accelerate GNN training by significantly reducing the memory footprint and PCIe bandwidth requirement so that GNNs can take full advantage of GPU computing capabilities. Our key insight is that unlike DNN, GNN is less prone to the information loss of input features caused by quantization. We identify the main accuracy impact factors in graph feature quantization and theoretically prove that BiFeat training converges to a network where the loss is within $\epsilon$ of the optimal loss of uncompressed network. We perform extensive evaluation of BiFeat using several popular GNN models and datasets, including GraphSAGE on MAG240M, the largest public graph dataset. The results demonstrate that BiFeat achieves a compression ratio of more than 30 and improves GNN training speed by 200%-320% with marginal accuracy loss. In particular, BiFeat achieves a record by training GraphSAGE on MAG240M within one hour using only four GPUs.