Li, Chaojian
HW-NAS-Bench:Hardware-Aware Neural Architecture Search Benchmark
Li, Chaojian, Yu, Zhongzhi, Fu, Yonggan, Zhang, Yongan, Zhao, Yang, You, Haoran, Yu, Qixuan, Wang, Yue, Lin, Yingyan Celine
HardWare-aware Neural Architecture Search (HW-NAS) has recently gained tremendous attention by automating the design of DNNs deployed in more resource-constrained daily life devices. Despite its promising performance, developing optimal HW-NAS solutions can be prohibitively challenging as it requires cross-disciplinary knowledge in the algorithm, micro-architecture, and device-specific compilation. First, to determine the hardware-cost to be incorporated into the NAS process, existing works mostly adopt either pre-collected hardware-cost look-up tables or device-specific hardware-cost models. Both of them limit the development of HW-NAS innovations and impose a barrier-to-entry to non-hardware experts. Second, similar to generic NAS, it can be notoriously difficult to benchmark HW-NAS algorithms due to their significant required computational resources and the differences in adopted search spaces, hyperparameters, and hardware devices. To this end, we develop HW-NAS-Bench, the first public dataset for HW-NAS research which aims to democratize HW-NAS research to non-hardware experts and make HW-NAS research more reproducible and accessible. To design HW-NAS-Bench, we carefully collected the measured/estimated hardware performance of all the networks in the search spaces of both NAS-Bench-201 and FBNet, on six hardware devices that fall into three categories (i.e., commercial edge devices, FPGA, and ASIC). Furthermore, we provide a comprehensive analysis of the collected measurements in HW-NAS-Bench to provide insights for HW-NAS research. Finally, we demonstrate exemplary user cases to (1) show that HW-NAS-Bench allows non-hardware experts to perform HW-NAS by simply querying it and (2) verify that dedicated device-specific HW-NAS can indeed lead to optimal accuracy-cost trade-offs. The codes and all collected data are available at https://github.com/RICE-EIC/HW-NAS-Bench.
DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference
Li, Chaojian, Chen, Wuyang, Gu, Yuchen, Chen, Tianlong, Fu, Yonggan, Wang, Zhangyang, Lin, Yingyan Celine
Semantic segmentation for scene understanding is nowadays widely demanded, raising significant challenges for the algorithm efficiency, especially its applications on resource-limited platforms. Current segmentation models are trained and evaluated on massive high-resolution scene images ("data level") and suffer from the expensive computation arising from the required multi-scale aggregation("network level"). In both folds, the computational and energy costs in training and inference are notable due to the often desired large input resolutions and heavy computational burden of segmentation models. To this end, we propose DANCE, general automated DAta-Network Co-optimization for Efficient segmentation model training and inference. Distinct from existing efficient segmentation approaches that focus merely on light-weight network design, DANCE distinguishes itself as an automated simultaneous data-network co-optimization via both input data manipulation and network architecture slimming. Specifically, DANCE integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity. Such a downsampling operation, in addition to slimming down the cost associated with the input size directly, also shrinks the dynamic range of input object and context scales, therefore motivating us to also adaptively slim the network to match the downsampled data. Extensive experiments and ablating studies (on four SOTA segmentation models with three popular segmentation datasets under two training settings) demonstrate that DANCE can achieve "all-win" towards efficient segmentation(reduced training cost, less expensive inference, and better mean Intersection-over-Union (mIoU)).
ShiftAddNet: A Hardware-Inspired Deep Network
You, Haoran, Chen, Xiaohan, Zhang, Yongan, Li, Chaojian, Li, Sicheng, Liu, Zihao, Wang, Zhangyang, Lin, Yingyan Celine
Multiplication (e.g., convolution) is arguably a cornerstone of modern deep neural networks (DNNs). However, intensive multiplications cause expensive resource costs that challenge DNNs' deployment on resource-constrained edge devices, driving several attempts for multiplication-less deep networks. This paper presented ShiftAddNet, whose main inspiration is drawn from a common practice in energy-efficient hardware implementation, that is, multiplication can be instead performed with additions and logical bit-shifts. We leverage this idea to explicitly parameterize deep networks in this way, yielding a new type of deep network that involves only bit-shift and additive weight layers. This hardware-inspired ShiftAddNet immediately leads to both energy-efficient inference and training, without compromising the expressive capacity compared to standard DNNs. The two complementary operation types (bit-shift and add) additionally enable finer-grained control of the model's learning capacity, leading to more flexible trade-off between accuracy and (training) efficiency, as well as improved robustness to quantization and pruning. We conduct extensive experiments and ablation studies, all backed up by our FPGA-based ShiftAddNet implementation and energy measurements. Compared to existing DNNs or other multiplication-less models, ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies. Codes and pre-trained models are available at https://github.com/RICE-EIC/ShiftAddNet.
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
Fu, Yonggan, Zhao, Yang, Yu, Qixuan, Li, Chaojian, Lin, Yingyan Celine
The recent breakthroughs of deep neural networks (DNNs) and the advent of billions of Internet of Things (IoT) devices have excited an explosive demand for intelligent IoT devices equipped with domain-specific DNN accelerators. However, the deployment of DNN accelerator enabled intelligent functionality into real-world IoT devices still remains particularly challenging. First, powerful DNNs often come at prohibitive complexities, whereas IoT devices often suffer from stringent resource constraints. Second, while DNNs are vulnerable to adversarial attacks especially on IoT devices exposed to complex real-world environments, many IoT applications require strict security. Existing DNN accelerators mostly tackle only one of the two aforementioned challenges (i.e., efficiency or adversarial robustness) while neglecting or even sacrificing the other. To this end, we propose a 2-in-1 Accelerator, an integrated algorithm-accelerator co-design framework aiming at winning both the adversarial robustness and efficiency of DNN accelerators. Specifically, we first propose a Random Precision Switch (RPS) algorithm that can effectively defend DNNs against adversarial attacks by enabling random DNN quantization as an in-situ model switch. Furthermore, we propose a new precision-scalable accelerator featuring (1) a new precision-scalable MAC unit architecture which spatially tiles the temporal MAC units to boost both the achievable efficiency and flexibility and (2) a systematically optimized dataflow that is searched by our generic accelerator optimizer. Extensive experiments and ablation studies validate that our 2-in-1 Accelerator can not only aggressively boost both the adversarial robustness and efficiency of DNN accelerators under various attacks, but also naturally support instantaneous robustness-efficiency trade-offs adapting to varied resources without the necessity of DNN retraining.
InstantNet: Automated Generation and Deployment of Instantaneously Switchable-Precision Networks
Fu, Yonggan, Yu, Zhongzhi, Zhang, Yongan, Jiang, Yifan, Li, Chaojian, Liang, Yongyuan, Jiang, Mingchao, Wang, Zhangyang, Lin, Yingyan Celine
The promise of Deep Neural Network (DNN) powered Internet of Thing (IoT) devices has motivated a tremendous demand for automated solutions to enable fast development and deployment of efficient (1) DNNs equipped with instantaneous accuracy-efficiency trade-off capability to accommodate the time-varying resources at IoT devices and (2) dataflows to optimize DNNs' execution efficiency on different devices. Therefore, we propose InstantNet to automatically generate and deploy instantaneously switchable-precision networks which operate at variable bit-widths. Extensive experiments show that the proposed InstantNet consistently outperforms state-of-the-art designs.
DNA: Differentiable Network-Accelerator Co-Search
Zhang, Yongan, Fu, Yonggan, Jiang, Weiwen, Li, Chaojian, You, Haoran, Li, Meng, Chandra, Vikas, Lin, Yingyan Celine
Powerful yet complex deep neural networks (DNNs) have fueled a booming demand for efficient DNN solutions to bring DNN-powered intelligence into numerous applications. Jointly optimizing the networks and their accelerators are promising in providing optimal performance. However, the great potential of such solutions have yet to be unleashed due to the challenge of simultaneously exploring the vast and entangled, yet different design spaces of the networks and their accelerators. To this end, we propose DNA, a Differentiable Network-Accelerator co-search framework for automatically searching for matched networks and accelerators to maximize both the task accuracy and acceleration efficiency. Specifically, DNA integrates two enablers: (1) a generic design space for DNN accelerators that is applicable to both FPGA- and ASIC-based DNN accelerators and compatible with DNN frameworks such as PyTorch to enable algorithmic exploration for more efficient DNNs and their accelerators; and (2) a joint DNN network and accelerator co-search algorithm that enables simultaneously searching for optimal DNN structures and their accelerators' micro-architectures and mapping methods to maximize both the task accuracy and acceleration efficiency. Experiments and ablation studies based on FPGA measurements and ASIC synthesis show that the matched networks and accelerators generated by DNA consistently outperform state-of-the-art (SOTA) DNNs and DNN accelerators (e.g., 3.04x better FPS with a 5.46% higher accuracy on ImageNet), while requiring notably reduced search time (up to 1234.3x) over SOTA co-exploration methods, when evaluated over ten SOTA baselines on three datasets. All codes will be released upon acceptance.
A3C-S: Automated Agent Accelerator Co-Search towards Efficient Deep Reinforcement Learning
Fu, Yonggan, Zhang, Yongan, Li, Chaojian, Yu, Zhongzhi, Lin, Yingyan Celine
Driven by the explosive interest in applying deep reinforcement learning (DRL) agents to numerous real-time control and decision-making applications, there has been a growing demand to deploy DRL agents to empower daily-life intelligent devices, while the prohibitive complexity of DRL stands at odds with limited on-device resources. In this work, we propose an Automated Agent Accelerator Co-Search (A3C-S) framework, which to our best knowledge is the first to automatically co-search the optimally matched DRL agents and accelerators that maximize both test scores and hardware efficiency. Extensive experiments consistently validate the superiority of our A3C-S over state-of-the-art techniques.
Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture
Wan, Zishen, Liu, Che-Kai, Yang, Hanchen, Raj, Ritik, Li, Chaojian, You, Haoran, Fu, Yonggan, Wan, Cheng, Li, Sixu, Kim, Youbin, Samajdar, Ananda, Lin, Yingyan Celine, Ibrahim, Mohamed, Rabaey, Jan M., Krishna, Tushar, Raychowdhury, Arijit
The remarkable advancements in artificial intelligence (AI), primarily driven by deep neural networks, are facing challenges surrounding unsustainable computational trajectories, limited robustness, and a lack of explainability. To develop next-generation cognitive AI systems, neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness, while facilitating learning from much less data. Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities. In this paper, we aim to understand the workload characteristics and potential architectures for neuro-symbolic AI. We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics on CPUs, GPUs, and edge SoCs. Our studies reveal that neuro-symbolic models suffer from inefficiencies on off-the-shelf hardware, due to the memory-bound nature of vector-symbolic and logical operations, complex flow control, data dependencies, sparsity variations, and limited scalability. Based on profiling insights, we suggest cross-layer optimization solutions and present a hardware acceleration case study for vector-symbolic architecture to improve the performance, efficiency, and scalability of neuro-symbolic computing. Finally, we discuss the challenges and potential future directions of neuro-symbolic AI from both system and architectural perspectives.
Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic AI
Wan, Zishen, Liu, Che-Kai, Yang, Hanchen, Li, Chaojian, You, Haoran, Fu, Yonggan, Wan, Cheng, Krishna, Tushar, Lin, Yingyan, Raychowdhury, Arijit
The remarkable advancements in artificial intelligence (AI), primarily driven by deep neural networks, have significantly impacted various aspects of our lives. However, the current challenges surrounding unsustainable computational trajectories, limited robustness, and a lack of explainability call for the development of next-generation AI systems. Neuro-symbolic AI (NSAI) emerges as a promising paradigm, fusing neural, symbolic, and probabilistic approaches to enhance interpretability, robustness, and trustworthiness while facilitating learning from much less data. Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities. In this paper, we provide a systematic review of recent progress in NSAI and analyze the performance characteristics and computational operators of NSAI models. Furthermore, we discuss the challenges and potential future directions of NSAI from both system and architectural perspectives.
GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models
Fu, Yonggan, Zhang, Yongan, Yu, Zhongzhi, Li, Sixu, Ye, Zhifan, Li, Chaojian, Wan, Cheng, Lin, Yingyan
The remarkable capabilities and intricate nature of Artificial Intelligence (AI) have dramatically escalated the imperative for specialized AI accelerators. Nonetheless, designing these accelerators for various AI workloads remains both labor- and time-intensive. While existing design exploration and automation tools can partially alleviate the need for extensive human involvement, they still demand substantial hardware expertise, posing a barrier to non-experts and stifling AI accelerator development. Motivated by the astonishing potential of large language models (LLMs) for generating high-quality content in response to human language instructions, we embark on this work to examine the possibility of harnessing LLMs to automate AI accelerator design. Through this endeavor, we develop GPT4AIGChip, a framework intended to democratize AI accelerator design by leveraging human natural languages instead of domain-specific languages. Specifically, we first perform an in-depth investigation into LLMs' limitations and capabilities for AI accelerator design, thus aiding our understanding of our current position and garnering insights into LLM-powered automated AI accelerator design. Furthermore, drawing inspiration from the above insights, we develop a framework called GPT4AIGChip, which features an automated demo-augmented prompt-generation pipeline utilizing in-context learning to guide LLMs towards creating high-quality AI accelerator design. To our knowledge, this work is the first to demonstrate an effective pipeline for LLM-powered automated AI accelerator generation. Accordingly, we anticipate that our insights and framework can serve as a catalyst for innovations in next-generation LLM-powered design automation tools.