Goto

Collaborating Authors

 Li, Bryan


Leveraging Domain Knowledge at Inference Time for LLM Translation: Retrieval versus Generation

arXiv.org Artificial Intelligence

While large language models (LLMs) have been increasingly adopted for machine translation (MT), their performance for specialist domains such as medicine and law remains an open challenge. Prior work has shown that LLMs can be domain-adapted at test-time by retrieving targeted few-shot demonstrations or terminologies for inclusion in the prompt. Meanwhile, for general-purpose LLM MT, recent studies have found some success in generating similarly useful domain knowledge from an LLM itself, prior to translation. Our work studies domain-adapted MT with LLMs through a careful prompting setup, finding that demonstrations consistently outperform terminology, and retrieval consistently outperforms generation. We find that generating demonstrations with weaker models can close the gap with larger model's zero-shot performance. Given the effectiveness of demonstrations, we perform detailed analyses to understand their value. We find that domain-specificity is particularly important, and that the popular multi-domain benchmark is testing adaptation to a particular writing style more so than to a specific domain.


Enhancing Adversarial Resistance in LLMs with Recursion

arXiv.org Artificial Intelligence

The increasing integration of Large Language Models (LLMs) into society necessitates robust defenses against vulnerabilities from jailbreaking and adversarial prompts. This project proposes a recursive framework for enhancing the resistance of LLMs to manipulation through the use of prompt simplification techniques. By increasing the transparency of complex and confusing adversarial prompts, the proposed method enables more reliable detection and prevention of malicious inputs. Our findings attempt to address a critical problem in AI safety and security, providing a foundation for the development of systems able to distinguish harmless inputs from prompts containing malicious intent. As LLMs continue to be used in diverse applications, the importance of such safeguards will only grow.


BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Large language models excel at creative generation but continue to struggle with the issues of hallucination and bias. While retrieval-augmented generation (RAG) provides a framework for grounding LLMs' responses in accurate and up-to-date information, it still raises the question of bias: which sources should be selected for inclusion in the context? And how should their importance be weighted? In this paper, we study the challenge of cross-lingual RAG and present a dataset to investigate the robustness of existing systems at answering queries about geopolitical disputes, which exist at the intersection of linguistic, cultural, and political boundaries. Our dataset is sourced from Wikipedia pages containing information relevant to the given queries and we investigate the impact of including additional context, as well as the composition of this context in terms of language and source, on an LLM's response. Our results show that existing RAG systems continue to be challenged by cross-lingual use cases and suffer from a lack of consistency when they are provided with competing information in multiple languages. We present case studies to illustrate these issues and outline steps for future research to address these challenges. We make our dataset and code publicly available at https://github.com/manestay/bordIRlines.


Uncovering Differences in Persuasive Language in Russian versus English Wikipedia

arXiv.org Artificial Intelligence

We study how differences in persuasive language across Wikipedia articles, written in either English and Russian, can uncover each culture's distinct perspective on different subjects. We develop a large language model (LLM) powered system to identify instances of persuasive language in multilingual texts. Instead of directly prompting LLMs to detect persuasion, which is subjective and difficult, we propose to reframe the task to instead ask high-level questions (HLQs) which capture different persuasive aspects. Importantly, these HLQs are authored by LLMs themselves. LLMs over-generate a large set of HLQs, which are subsequently filtered to a small set aligned with human labels for the original task. We then apply our approach to a large-scale, bilingual dataset of Wikipedia articles (88K total), using a two-stage identify-then-extract prompting strategy to find instances of persuasion. We quantify the amount of persuasion per article, and explore the differences in persuasion through several experiments on the paired articles. Notably, we generate rankings of articles by persuasion in both languages. These rankings match our intuitions on the culturally-salient subjects; Russian Wikipedia highlights subjects on Ukraine, while English Wikipedia highlights the Middle East. Grouping subjects into larger topics, we find politically-related events contain more persuasion than others. We further demonstrate that HLQs obtain similar performance when posed in either English or Russian. Our methodology enables cross-lingual, cross-cultural understanding at scale, and we release our code, prompts, and data.


Eliciting Better Multilingual Structured Reasoning from LLMs through Code

arXiv.org Artificial Intelligence

The development of large language models (LLM) has shown progress on reasoning, though studies have largely considered either English or simple reasoning tasks. To address this, we introduce a multilingual structured reasoning and explanation dataset, termed xSTREET, that covers four tasks across six languages. xSTREET exposes a gap in base LLM performance between English and non-English reasoning tasks. We then propose two methods to remedy this gap, building on the insight that LLMs trained on code are better reasoners. First, at training time, we augment a code dataset with multilingual comments using machine translation while keeping program code as-is. Second, at inference time, we bridge the gap between training and inference by employing a prompt structure that incorporates step-by-step code primitives to derive new facts and find a solution. Our methods show improved multilingual performance on xSTREET, most notably on the scientific commonsense reasoning subtask. Furthermore, the models show no regression on non-reasoning tasks, thus demonstrating our techniques maintain general-purpose abilities.


This Land is {Your, My} Land: Evaluating Geopolitical Biases in Language Models

arXiv.org Artificial Intelligence

Do the Spratly Islands belong to China, the Philippines, or Vietnam? A pretrained large language model (LLM) may answer differently if asked in the languages of each claimant country: Chinese, Tagalog, or Vietnamese. This contrasts with a multilingual human, who would likely answer consistently. In this work, we show that LLMs recall geopolitical knowledge inconsistently across languages -- a phenomenon we term geopolitical bias. As a targeted case study, we consider territorial disputes, inherently controversial and cross-lingual task. We first introduce the BorderLines dataset of territorial disputes. This covers 256 territories, each of which is associated to a set of multiple-choice questions in the languages of each claimant country (48 languages total). We then pose these questions to LLMs to probe their internal knowledge. Finally, we propose a suite of evaluation metrics based on accuracy, which compares responses with respect to the actual geopolitical situation, and consistency of the responses in different languages. These metrics allow us to quantify several findings, which include instruction-tuned LLMs underperforming base ones, and geopolitical bias being amplified in stronger models. We release our code and dataset to facilitate future investigation and mitigation of geopolitical bias.


PAXQA: Generating Cross-lingual Question Answering Examples at Training Scale

arXiv.org Artificial Intelligence

Existing question answering (QA) systems owe much of their success to large, high-quality training data. Such annotation efforts are costly, and the difficulty compounds in the cross-lingual setting. Therefore, prior cross-lingual QA work has focused on releasing evaluation datasets, and then applying zero-shot methods as baselines. This work proposes a synthetic data generation method for cross-lingual QA which leverages indirect supervision from existing parallel corpora. Our method termed PAXQA (Projecting annotations for cross-lingual (x) QA) decomposes cross-lingual QA into two stages. First, we apply a question generation (QG) model to the English side. Second, we apply annotation projection to translate both the questions and answers. To better translate questions, we propose a novel use of lexically-constrained machine translation, in which constrained entities are extracted from the parallel bitexts. We apply PAXQA to generate cross-lingual QA examples in 4 languages (662K examples total), and perform human evaluation on a subset to create validation and test splits. We then show that models fine-tuned on these datasets outperform prior synthetic data generation models over several extractive QA datasets. The largest performance gains are for directions with non-English questions and English contexts. Ablation studies show that our dataset generation method is relatively robust to noise from automatic word alignments, showing the sufficient quality of our generations. To facilitate follow-up work, we release our code and datasets at https://github.com/manestay/paxqa .


Large Language Models as Sous Chefs: Revising Recipes with GPT-3

arXiv.org Artificial Intelligence

With their remarkably improved text generation and prompting capabilities, large language models can adapt existing written information into forms that are easier to use and understand. In our work, we focus on recipes as an example of complex, diverse, and widely used instructions. We develop a prompt grounded in the original recipe and ingredients list that breaks recipes down into simpler steps. We apply this prompt to recipes from various world cuisines, and experiment with several large language models (LLMs), finding best results with GPT-3.5. We also contribute an Amazon Mechanical Turk task that is carefully designed to reduce fatigue while collecting human judgment of the quality of recipe revisions. We find that annotators usually prefer the revision over the original, demonstrating a promising application of LLMs in serving as digital sous chefs for recipes and beyond. We release our prompt, code, and MTurk template for public use.


Multilingual Bidirectional Unsupervised Translation Through Multilingual Finetuning and Back-Translation

arXiv.org Artificial Intelligence

We propose a two-stage approach for training a single NMT model to translate unseen languages both to and from English. For the first stage, we initialize an encoder-decoder model to pretrained XLM-R and RoBERTa weights, then perform multilingual fine-tuning on parallel data in 40 languages to English. We find this model can generalize to zero-shot translations on unseen languages. For the second stage, we leverage this generalization ability to generate synthetic parallel data from monolingual datasets, then bidirectionally train with successive rounds of back-translation. Our approach, which we EcXTra (English-centric Crosslingual (X) Transfer), is conceptually simple, only using a standard cross-entropy objective throughout. It is also data-driven, sequentially leveraging auxiliary parallel data and monolingual data. We evaluate unsupervised NMT results for 7 low-resource languages, and find that each round of back-translation training further refines bidirectional performance. Our final single EcXTra-trained model achieves competitive translation performance in all translation directions, notably establishing a new state-of-the-art for English-to-Kazakh (22.9 > 10.4 BLEU). Our code is available at https://github.com/manestay/EcXTra .


Bidirectional Language Models Are Also Few-shot Learners

arXiv.org Artificial Intelligence

Large language models such as GPT-3 (Brown et al., 2020) can perform arbitrary tasks without undergoing fine-tuning after being prompted with only a few labeled examples. An arbitrary task can be reformulated as a natural language prompt, and a language model can be asked to generate the completion, indirectly performing the task in a paradigm known as prompt-based learning. To date, emergent prompt-based learning capabilities have mainly been demonstrated for unidirectional language models. However, bidirectional language models pre-trained on denoising objectives such as masked language modeling produce stronger learned representations for transfer learning. This motivates the possibility of prompting bidirectional models, but their pre-training objectives have made them largely incompatible with the existing prompting paradigm. We present SAP (Sequential Autoregressive Prompting), a technique that enables the prompting of bidirectional models. Utilizing the machine translation task as a case study, we prompt the bidirectional mT5 model (Xue et al., 2021) with SAP and demonstrate its few-shot and zero-shot translations outperform the few-shot translations of unidirectional models like GPT-3 and XGLM (Lin et al., 2021), despite mT5's approximately 50% fewer parameters. We further show SAP is effective on question answering and summarization. For the first time, our results demonstrate prompt-based learning is an emergent property of a broader class of language models, rather than only unidirectional models.