Li, Binbin
Triple GNNs: Introducing Syntactic and Semantic Information for Conversational Aspect-Based Quadruple Sentiment Analysis
Li, Binbin, Li, Yuqing, Jia, Siyu, Ma, Bingnan, Ding, Yu, Qi, Zisen, Tan, Xingbang, Guo, Menghan, Liu, Shenghui
Conversational Aspect-Based Sentiment Analysis (DiaASQ) aims to detect quadruples \{target, aspect, opinion, sentiment polarity\} from given dialogues. In DiaASQ, elements constituting these quadruples are not necessarily confined to individual sentences but may span across multiple utterances within a dialogue. This necessitates a dual focus on both the syntactic information of individual utterances and the semantic interaction among them. However, previous studies have primarily focused on coarse-grained relationships between utterances, thus overlooking the potential benefits of detailed intra-utterance syntactic information and the granularity of inter-utterance relationships. This paper introduces the Triple GNNs network to enhance DiaAsQ. It employs a Graph Convolutional Network (GCN) for modeling syntactic dependencies within utterances and a Dual Graph Attention Network (DualGATs) to construct interactions between utterances. Experiments on two standard datasets reveal that our model significantly outperforms state-of-the-art baselines. The code is available at \url{https://github.com/nlperi2b/Triple-GNNs-}.
MedDM:LLM-executable clinical guidance tree for clinical decision-making
Li, Binbin, Meng, Tianxin, Shi, Xiaoming, Zhai, Jie, Ruan, Tong
It is becoming increasingly emphasis on the importance of LLM participating in clinical diagnosis decision-making. However, the low specialization refers to that current medical LLMs can not provide specific medical advice, which are more like a medical Q\&A. And there is no suitable clinical guidance tree data set that can be used directly with LLM. To address this issue, we first propose LLM-executavle clinical guidance tree(CGT), which can be directly used by large language models, and construct medical diagnostic decision-making dataset (MedDM), from flowcharts in clinical practice guidelines. We propose an approach to screen flowcharts from medical literature, followed by their identification and conversion into standardized diagnostic decision trees. Constructed a knowledge base with 1202 decision trees, which came from 5000 medical literature and covered 12 hospital departments, including internal medicine, surgery, psychiatry, and over 500 diseases.Moreover, we propose a method for reasoning on LLM-executable CGT and a Patient-LLM multi-turn dialogue framework.
Online Camera-to-ground Calibration for Autonomous Driving
Li, Binbin, Du, Xinyu, Hu, Yao, Yu, Hao, Zhang, Wende
Online camera-to-ground calibration is to generate a non-rigid body transformation between the camera and the road surface in a real-time manner. Existing solutions utilize static calibration, suffering from environmental variations such as tire pressure changes, vehicle loading volume variations, and road surface diversity. Other online solutions exploit the usage of road elements or photometric consistency between overlapping views across images, which require continuous detection of specific targets on the road or assistance with multiple cameras to facilitate calibration. In our work, we propose an online monocular camera-to-ground calibration solution that does not utilize any specific targets while driving. We perform a coarse-to-fine approach for ground feature extraction through wheel odometry and estimate the camera-to-ground calibration parameters through a sliding-window-based factor graph optimization. Considering the non-rigid transformation of camera-to-ground while driving, we provide metrics to quantify calibration performance and stopping criteria to report/broadcast our satisfying calibration results. Extensive experiments using real-world data demonstrate that our algorithm is effective and outperforms state-of-the-art techniques.
Combining Eye Movements and EEG to Enhance Emotion Recognition
Lu, Yifei (Shanghai Jiao Tong University) | Zheng, Wei-Long (Shanghai Jiao Tong University) | Li, Binbin (Shanghai Jiao Tong University) | Lu, Bao-Liang (Shanghai Jiao Tong University)
In this paper, we adopt a multimodal emotion recognition framework by combining eye movements and electroencephalography (EEG) to enhance emotion recognition. The main contributions of this paper are twofold. a) We investigate sixteen eye movements related to emotions and identify the intrinsic patterns of these eye movements for three emotional states: positive, neutral and negative. b) We examine various modality fusion strategies for integrating users external subconscious behaviors and internal cognitive states and reveal that the characteristics of eye movements and EEG are complementary to emotion recognition. Experiment results demonstrate that modality fusion could significantly improve emotion recognition accuracy in comparison with single modality. The best accuracy achieved by fuzzy integral fusion strategy is 87.59%, whereas the accuracies of solely using eye movements and EEG data are 77.80% and 78.51%, respectively.